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1 Introduction 

How clinically collected data are properly statistically analyzed very much 

depends on its structure. Periodontal and other dental data are usually manifold 

observations which are made in one oral cavity. For instance, in order to describe 

the overall periodontal situation in a certain cohort, (i) sites (or gingival units) 

around (ii) teeth within (iii) patients or subjects are considered by using metric, 

ordinal, or binary variables. Then, observations may be (iv) repeated in a 

longitudinal way. This is a typical hierarchical situation with lower (occasions, 

sites) and upper levels (teeth, subjects). In clinical trials, a further (higher) level is 

present when patients are assigned to different centers.  

A suitable armamentarium for the study of fixed (estimates of covariates) and 

random effects (variances and covariances) is multilevel modeling which has been 

applied to dental research data for long (Sterne 1988, Albandar and Goldstein 

1992, Gilthorpe et al. 2000). Whereas the methods are well-known and have now 

been implemented in major statistical software packages such as SAS, STATA, R, 

even SPSS (and many others; for a comprehensive review of software programs 

and packages that are designed or can be used for multilevel analyses see de 

Leeuw and Kreft (2001)), major and somewhat revealing obstacles for applying 

them has long been at least twofold: a perceived (by clinicians) unwillingness of 

common biostatisticians to make themselves familiar with the more sophisticated 
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methods of multilevel modeling, which are otherwise rarely used in medicine; and 

the simple fact that their application by clinical scientists, if not of most other 

statistical methods (Tu and Gilthorpe 2012), is vehemently discouraged by some 

biostatisticians.  

The easy-to-apply special software MLwiN has been developed more than a decade 

ago, and the program has been applied in a considerable number of papers in 

dentistry; see, for instance, Gilthorpe et al. (2000), Ciantar et al. (2005), Müller 

(2008, 2009a), Müller et al. (2006), Müller and Stadermann (2006), Müller and 

Barrieshi-Nusair (2010), Tomasi et al. (2007), Fransson et al. (2010). Usually, 

insights into complex data structure are revealing. Since a respective manual by the 

Centre of Multilevel Modelling in Bristol (Rasbash et al. 2015) explicitly uses 

examples and data sets from the social sciences, the aim of the present tutorial is to 

give a rather non-technical description of the basic principles of multilevel 

modeling using exclusively periodontal datasets which have been collected over 

the past ten years in order to further promote the correct statistical analysis of 

frequently hierarchically organized dental data.  
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1.1 The Problem 

As Rasbash et al. (2015) commence in the introduction of the latest MLwiN 

manual, “In the social, medical and biological sciences multilevel or hierarchical 

structured data are the norm and they are also found in many other areas of 

application.”  

Whereas any statistical model should explicitly recognize a hierarchical structure 

when it is present, and data structure is expected to be commonly hierarchical in 

dentistry and, in particular, periodontology, there are essentially two traditional 

approaches to data analysis.  

 

1.2 Traditional Solutions 

1.2.1 Site-specific analysis disregarding the subject 

This approach, which can mainly be traced in scientific papers in Periodontology 

well up into the mid- or end-1980s, has vehemently been condemned by 

biostatisticians (Imrey 1986). As fact of the matter, clustered or hierarchical 

observations made in a certain subject are not independent, which is a fundamental 

assumption required for most statistical hypothesis testing. For instance, measures 

of periodontal disease within an oral cavity of a given patient are more alike than 
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observations across oral cavities of other patients or subjects. By ignoring the 

subject level, standard errors of regression coefficients will inevitably be 

underestimated with grave consequences for hypothesis testing.  

  

1.2.2 Aggregate analysis 

By far the most common approach is, therefore, aggregating observations at the 

subject level. As an example, consider the cohort of 127 young adults with 

gingivitis where the association between presence or absence of supragingival 

dental plaque (a biofilm constantly forming on tooth surfaces, which can and 

should be removed regularly by toothbrushing) and gingival bleeding on probing 

(BOP) with a periodontal probe exerted with a more or less defined pressure (a 

sign for gingival inflammation caused, according to common sense, by dental 

plaque) had been assessed (Müller et al. 2000a).  

In a subject-level, aggregate analysis one could have a look at the correlation 

between the proportion of tooth surfaces covered by plaque in each subject and the 

proportion of respective gingival units bleeding on probing. As an example, Fig. 

1.1 displays results of such an analysis.  

Ordinary regression was used to assess the relationship between the two variables. 

What might be stunning is the considerable scatter of data pairs representing the 
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subjects. Correspondingly, the correlation between the two sets of proportions was 

only a moderate with Pearson’s r of 0.54.  

 

Fig. 1.1 Regression of the proportion of gingival sites bleeding on probing (BOP) on the 
proportion of sites with supragingival plaque. The regression line and its 95%-confidence 
interval are given (Müller et al. 2000a). 
 

One has to keep in mind, however, that any causal relationship should be assessed 

at the lower level, i.e. the gingival unit. Apparently, this information has been 

discarded. Aggregated analyses are prone to what has been termed the “ecological 

fallacy”. An early example is Durkheim’s classic study on suicide (Durkheim 

1951). Whereas Durkheim concluded that Protestants are more likely to commit 

suicide than Catholics based on higher prevalence of suicide in 19th century Prussia 
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(with its majority of Protestants) than in Bavaria (with its mainly Catholic 

population), when no data are actually missing on the lower subject level, one 

might also argue that it might mainly be Catholics who had committed suicide in 

largely Protestant provinces. While ecological analyses become flawed in exactly 

the same circumstances that individual level analyses do, namely in the presence of 

confounding, consequences of confounding are more severe in the former 

(Piantadosi et al. 1988). 

 

1.2.3 Analysis of stratified site-specific associations  

In order to preserve the site-specific information, the association between plaque 

and gingival bleeding on probing was further assessed by Müller et al. (2000) in a 

stratified analysis, i.e. on a subject-by-subject basis. New and revealing 

observations were reported. First, the association in this cross-sectional study 

unexpectedly varied from moderately negative (odds ratio = 0.24) to very strong 

positive (odds ratio >60). Fig. 1.2 displays cumulative frequencies of log-

transformed odds ratios. A weighted overall estimate, Mantel-Haenszel’s odds 

ratio, was 2.25 (p<0.001).  
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Fig. 1.2 Distribution of ln-transformed individual odds ratios describing the association 
between supragingival plaque and BOP (Müller et al. 2000a). 
 

Secondly, although the data were cross-sectional, a closer look at subjects with 

extreme associations (those in the upper and lower 20% of odds ratios) revealed 

that the two subgroups presented with significantly different mean loss of 

periodontal attachment, mainly as gingival recession. So, those subjects with a 

strong positive association between supragingival plaque and BOP had 

significantly more attachment loss (gingival recession) than those with a weak or 

negative association. As can be seen in Fig. 1.3, there was a weak correlation 
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between mean recession and log-transformed odds ratios describing the individual 

association between supragingival plaque and BOP (Müller et al. 2000a). 

 

Fig. 1.3 Regression of mean gingival recession on individual ln-transformed odds ratios of 
supragingival plaque and BOP. The regression line and its 95%-confidence interval are given 
(Müller et al. 2000a). 
 

It might be important to conclude that careful analysis of the subject-related 

association between site-specific variables plaque and BOP had revealed certain 

new observations far beyond the common conclusions derived from aggregated 

analyses, e.g. that the proportion of plaque-covered surfaces is related to the 

proportion of gingival units bleeding on probing. The new finding was that a 

strong association might be related to gingival recession (Müller et al. 2000a). 
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1.3 Generalized Estimating Equations 

Variation between subjects has also been modeled by incorporating separate terms 

for each subject. So, the level of response (the intercept) was assumed to depend 

on the individual, see, for instance, Mombelli et al. (1994). However, this 

procedure does not allow for generalization but may rather yield results just for the 

cohort under investigation. So, it does not treat subjects as a random sample. It is 

moreover inefficient since it involves estimating a large number of coefficients. 

Logistic regression diagnostics have been applied to indicate a number of grave 

problems with this approach (Müller et al. 1998a). 

Generalized Estimating Equation (GEE) methods for correctly considering the 

clustered structure of data had been introduced as an extension of generalized 

linear models and the quasi-likelihood method to the analysis of correlated (Liang 

and Zeger 1986) or longitudinal (Zeger and Liang 1986) data. GEE have been 

suggested by DeRouen et al. (1991) for correlated periodontal data but application 

in dentistry has not been widespread (Müller et al. 1997, 1998a, b, 2000a, b, Harrel 

and Nunn 2001a, b). Specifically, coefficient estimates are defined by the solution 

of a set of estimating equations, which involve a working correlation matrix, which 

is assumed to be completely specified by a vector of correlation parameters. The 



14 
 

working correlation matrix can be thought of as a weighting matrix for responses 

within the same subject. An important property of GEE is that the regression 

coefficient estimates are consistent, even if the working correlation matrix is not 

the correct correlation, although there may be a loss in efficiency relative to the 

correct specification of the correlation structure (DeRouen et al. 1995). A useful 

specification of a correlation matrix corresponds to the assumption that the 

pairwise correlation between responses within the same subject are all the same. 

This correlation structure is called exchangeable correlation (or also “dental 

common”) and has been shown to be most suitable for periodontal data (DeRouen 

et al. 1991, 1995).  

GEE may be preferred when interest is mainly on the effect of explanatory 

variables on the response, and correlation structure is generally considered a 

nuisance. The following chapters will reveal that the main advantage of multilevel 

modeling with its unbiased dealing with the hierarchical structure of the data is, 

besides obtaining correct estimates of fixed effects, an analysis of the random part 

of the model (variances and covariances) which may provide new and deep 

insights into phenomena and mechanisms operating at the level of interest, the 

periodontal site. 
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1.4 Introduction to Multilevel Modeling 

The data in a first introductory example for the application of multilevel modeling 

had been collected in a group of 40 periodontally healthy young adults (21 female) 

with good oral hygiene and has extensively been published using some of the 

above methods (Müller et al. 2000b, c). A thorough mucogingival examination 

consisted of measurements of thickness (as measured with a special ultrasonic 

device with a resolution of 0.1 mm) and width of gingiva, periodontal probing 

depth, bleeding on probing, and ratios of crown width to its length of incisors, 

canines and premolars. The latter were not further considered here.  

For a tutorial on how to deal with hierarchical data in periodontal research (Müller 

2009b) the question had been asked: Is gingival thickness as measured mid-

buccally at each tooth related to gingival width? A very simple expression of the 

relationship, disregarding sampling in different subjects, may be a linear regression 

model as described by equation (1.1) 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 

𝑒𝑖~𝑁(0,𝜎2)          (1.1) 

 

Teeth, indexed by i, were sampled. The response y is gingival thickness, and x is 

the predictor, gingival width, as measured with a periodontal probe to the nearest 
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mm. Both variables were centered on their respective means. The residuals ei are 

assumed to have normal distribution with variance σ2, of course with the further 

assumption of being independently distributed. Neither β0 (estimate -0.002; 

standard error 0.015) nor β1 (-0.003; 0.011) were significantly different from 0 

(which has of course to be expected for β0 due to centering). The variance σ2 was 

0.273 (0.011). The relationship between gingival thickness and width (centered on 

their respective means) is graphically displayed in Fig. 1.4. 

Since several teeth were sampled in a given subject the assumption of 

independence is of course not justified. As discussed above, measurements of 

gingival thickness at two teeth sampled in a certain individual will be more similar 

than those at teeth sampled in different subjects, even if adjusted for gingival width 

(xi). 
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Fig. 1.4 Regression of gingival thickness (y-axis) on gingival width (x-axis, both in mm). 
Subject effects are disregarded (model 1.1). Neither the intercept nor the regression coefficient 
differs significantly from 0. 
 

Thus, a more elaborate model may be a natural extension of equation (1.1):   

𝑦𝑖𝑖 = 𝛽0 + 𝛽1𝑥𝑖𝑖 + 𝑢𝑗 + 𝑒𝑖𝑖 

𝑢𝑗~𝑁(0,𝜎𝑢2) 

𝑒𝑖𝑖~𝑁(0,𝜎𝑒2)          (1.2) 

 

with i indexing teeth and j subjects. Subject effects are described by the residuals 

uj. That yields a group of parallel regression lines with different intercepts as is 

shown in Fig. 1.5. 
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Fig. 1.5 Parallel regression lines for 40 subjects representing regressions of gingival 
thickness on gingival width according to a random intercept model (model 1.2).  
 

The random intercept model in equation (1.2) is also known as “variance 

components” model (see Chapter 2) since, given subject and tooth residuals are 

independent, the total (unexplained) variance is the sum of the between-subject 

variance 𝜎𝑢2 and the between-tooth variance 𝜎𝑒2. In this random effects model, 

subject effects are modeled as a random variable depending on a single parameter, 

the variance 𝜎𝑢2.  The parallel lines in Fig. 1.5 have different intercepts and the 

variation between these intercepts is called simple level 2 variation. Subjects are 

thought of as randomly sampled from a larger population about we wish to make 

inferences.  
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When considering the present data, this model points to a significant influence of 

gingival width; the regression coefficient β1 was -0.036 with a standard error of 

0.011. While the mean intercept β0 was again close to zero (estimate -0.004; 

standard error 0.028), subjects’ intercepts varied with 𝜎𝑢2 of 0.024 (0.007). The 

tooth level variance 𝜎𝑒2 was 0.251 (0.011). The likelihood ratio test statistic (with 

one additional parameter, thus 1 degree of freedom) for this and the model 

described in equation (1.1) was 41.52 (p < 0.001), pointing to a better fit of the 

more elaborate model to the data.  

But does this model in fact describe the reality in such a way that one can, with 

justification and some confidence, predict the outcome, gingival thickness? 

In the above random intercept model (1.2) the (negative) relationship between 

gingival thickness and width was assumed to be the same for all subjects. But 

should we expect this in a biological system, in particular when considering the by 

far non-significant relationship in the model described in equation (1.1)? It is much 

more likely that, in reality, the relationship with gingival width varies from subject 

to subject. A random coefficient model with different slope predictions for 

subjects’ regression lines may be written as 

𝑦𝑖𝑖 = 𝛽0 + 𝛽1𝑗𝑥𝑖𝑖 + 𝑢0𝑗 + 𝑒𝑖𝑖 

𝛽1𝑗 = 𝛽1 + 𝑢1𝑗     (1.3) 
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where (u0j, u1j) is assumed bivariate normal with 𝑣𝑣𝑣�𝑢0𝑗� = 𝜎𝑢02 , 𝑣𝑣𝑣�𝑢1𝑗� =

𝜎𝑢12 , 𝑐𝑐𝑐�𝑢0𝑗 ,𝑢1𝑗� = 𝜎𝑢01. 

Now, the coefficient of x (gingival width) is assumed to be random across subjects. 

Its mean is β1, its variance 𝜎𝑢12 , and its covariance is 𝜎𝑢01. In this model, the mean 

intercept β0 was again very close to zero (-0.001; standard error 0.026). Intercepts 

for different subjects varied significantly (p = 0.004) around the mean with a 

variance 𝜎𝑢02  of 0.017 (0.006). The mean coefficient for x (gingival width) was 

largely attenuated (-0.028) and, due to the larger standard error of 0.019, no longer 

significant. Coefficients varied around the mean with variance 𝜎𝑢12   of 0.009 

(0.003). The covariance 𝜎𝑢01 was small (-0.002) and, due to its large standard error 

of 0.003, not significant. The tooth level variance was again further attenuated to 

0.236 (0.010). The likelihood ratio test statistic for this and the random intercept 

model was 40.18 with 2 degrees of freedom. Thus, the random slope model 

described the situation significantly (p < 0.001) better than the previous model. A 

graphical representation of the data under consideration is shown in Fig. 1.6.  
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Fig. 1.6 Non-parallel regression lines representing regressions of gingival thickness on 
gingival width according to the random coefficient model. Each subject provides a regression 
line with a different slope (model 1.3). 
 

Thus, if we allow the slopes of the lines to vary as in Fig. 1.6, then differences 

between subjects depend on teeth’s gingival width. This is an example of complex 

level 2 variation. 

So far, only gingival width has been considered as a possible predictor of gingival 

thickness in two 2-level models, random intercept and random coefficient. It turned 

out that its influence, if any, is rather low. We can assume, however, that thickness 

of gingiva may be related to other covariates such as periodontal probing depth at 

the tooth level, and gender at the subject level, as well. Tooth level covariate 
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probing depth may again differ from subject to subject. Respective possible 

extensions of the models described in equations (1.2) and (1.3) and numerous 

further applications of multilevel modeling will be dealt with in the following 

chapters. 
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2 Variance Components  

In the previous chapter, the question had been asked whether gingival thickness, as 

measured mid-buccally at each tooth, was related to width of buccal gingiva. 

Several models had been built in a stepwise approach: a model ignoring the subject 

level, a two-level random intercept model, and a two-level random coefficient 

model. It could be shown that each model fitted the collected data better than the 

previous one. Eventually it turned out that the influence of gingival width on 

gingival thickness, if any, was low in general but depended significantly on the 

subject.  

Gingival dimensions, i.e. its width and thickness, have long been related to the so-

called periodontal phenotype, which appears to be a characteristic of a given 

subject. Gingival dimensions show great intra- and interindividual variation which 

is associated with tooth type and shape, and which is also mainly genetically 

determined. Our group has used cluster analysis of gingival appearance at upper 

anterior teeth and the respective shapes of the teeth of data collected in two 

independent samples of young adults (Müller and Eger 1997, Müller et al. 2000b) 

to study the periodontal phenotype in some detail. As cluster analysis  is largely 

explorative, and external validity is questionable, the typical hierarchical structure 

of data collected in a third sample acquired in dental students was analyzed by 
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multilevel modeling (Müller and Könönen 2005) with the specific aim to 

determine subject variation of gingival thickness, a supposed important part of the 

periodontal phenotype.  

A most reasonable way to set up any multilevel model is to start with the basic 

variance components, or null, model without any covariates. The model should 

then be built up to increasing complexity by adding possible covariates which are 

assumed to have an influence on the response variable, and then checking whether 

they have substantial and/or significant fixed and random coefficients. 

An MLwiN worksheet had been prepared already by importing the data from an 

EXCEL file (vcgth.wsz). How to import data from, for instance, an EXCEL file 

will be explained in Chapter 3. Our MLwiN file contains the following variables: 

Variable Description 
id Subject’s identifier 
no Subject number (1-33) 
cons A column of ones. If included as an explanatory variable 

in a regression model, its coefficient is the intercept 
age Subject’s age in years 
tooth_no FDI notation of teeth (11-48) 
site Site code (mb: 1, b: 2, db: 3, dl: 4, l: 5, ml: 6) 
ppd Periodontal probing depth (mm) 
cal Clinical attachment level (mm) 
bi Bleeding index (0-2) 
pli Plaque index (0-3) 
calc Calculus (0, 1) 
ght Gingival thickness (mm) 
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Since all subjects were female, gender was not a variable. Note that the data have 

to be sorted in MLwiN by level 1 (here tooth) nested within level 2 (subject), and 

nested in higher levels if that was the case. 

 

2.1 Setting up a Variance Components Model 

After we have installed MLwiN, we may open the file vcgth.wsz. The worksheet 

will probably automatically open. MLwiN worksheets contain data and other 

information in a series of columns, as on a spreadsheet. For a general description 

of the program, the user is referred to Rasbash et al. (2015). 

 

In order to start tackling the question about subject variation of gingival thickness 

as compared to tooth variation we need to set up a random effects or multilevel 

model with no further explanatory variables (cf. model (1.2) in chapter 1), which 

can be written as: 
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𝑦𝑖𝑖 = 𝛽0𝑗 + 𝑒𝑖𝑖 

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗 

𝑢0𝑗~𝑁(0,𝜎𝑢02 ) 

𝑒𝑖𝑖~𝑁(0,𝜎𝑒2)                (2.1) 

In this model, u0j, the subject effects, are assumed to be random variables coming 

from a Normal distribution with variance 𝜎𝑢02 . β0 is regarded the overall population 

mean with the u0j’s representing each subject’s difference from this mean. Thus, 

the mean of the random variable u0j is zero. 

We start by selecting from the Model menu Equations. The following window 

will appear: 

 

In order to specify the response variable, i.e., gingival thickness, just click on so far 

red y (indicating that it has not yet been identified) in the equation window. In the 

appearing window, we select gth from the drop-down list labeled y, and from the 
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drop-down list labeled N levels we select 2-ij. Then we select id from the 

appearing drop-down list labeled level 2(j) and tooth_no from the drop-down list 

labeled level 1(i). We click done and the equation window looks as follows: 

 

Still, fixed parameter x0 appears red, meaning that it has not yet been specified. 

Since we are interested in variances only (at the subject and tooth levels), we select 

cons, a column of ones. In the appearing window we check both boxes labeled 

j(id) and i(tooth_no) and click done. Note that the equation window has changed 

its appearance. When now clicking the Start button on the main window’s tool 

bar, the model is run. 
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The model has instantly converged, and all estimates have turned from blue to 

green.  

In Table 2.1 we see the results of a two-level variance components model without 

further covariates, i.e., the null model, displayed. Mean gingival thickness (the 

intercept β0) is 0.931 mm with a standard error (SE) of 0.021 mm. Variation at 

both the subject and the tooth level (see the respective variances of residuals u0j 

and e0ij) is substantial. However, subject variance amounts to only 0.008 (SE 

0.003), which means that it is just 4.2% of the total variance which amounts to 

0.191 (0.008 + 0.183). The variance partition coefficient (VPC)  𝜎𝑢02 /(𝜎𝑢02 + 𝜎𝑒2) 

which is interpreted as the proportion of the total residual variation that is due to 

differences between subjects is frequently called intra-class correlation coefficient 

which measures the similarity between subunits (here, teeth)  in the same “class” 

(subject). 
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Table 2.1 Two-level variance components model (null model) of facial 
thickness.  
 
 Estimates 95% confidence interval 
Fixed effects   
Intercept 0.931 0.891; 0.971 
Random effects 
(variances) 

  

Subject (𝜎𝑢02 ) 0.008 0.001; 0.015 
Tooth (𝜎𝑒02 ) 0.183 0.166; 0.200 
-2*log likelihood = 1108.529 

We may save the model under a new name, say, VCgth01.wsz. 

 

2.2 Extension of the Variance Components Model 

We now may want to know whether gingival thickness is associated with other 

clinical variables which have routinely been recorded when subjects had been 

examined. For instance, at the tooth level, periodontal probing depth (ppd), 

bleeding on probing (bop) and visible plaque index (vpi) may be of interest.  

Now, bleeding after probing had been assessed according to a rather subjective 

bleeding index which differentiates slight from profuse bleeding. We want to 

know, how often “profuse bleeding” had actually occurred. In the Basic Statistics 

menu we select Tabulate and from the drop-down list in Columns we select bi. 
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By clicking on Tabulate, we see in an output that the vast majority of sites (4455) 

did not bleed after probing (bi=0) while slight bleeding occurred at 1135 sites 

(bi=1). Ninety-eight sites profusely bled (bi=2).  

 

We want to join slight and profuse bleeding to a new variable, bleeding on 

probing, bop. Thus, we need to recode the variable bi. We click in the Data 

Manipulation menu recode and select by Value. From the drop-down list we 

select bi. Old values for bi are 0, 1 or 2. In the New Values column we want to 

change 2 to 1. We want to save the new variable bop in Destination Column c13. 

We then click on execute. We click on c13 in the worksheet and rename the 

variable as bop. We then change the variable to categorical by clicking Toggle 

Categorical in the Names window.    
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In a similar way, we want to recode pli. Scores 0 and 1 should be 0, and scores 2 

and 3 should be 1 in the new variable, visible plaque index, vpi. In the Data 

Manipulation menu we select recode, and this time by Range. First we select pli 

from Input columns and c14from the Output columns. Values in range 0 to 1 

are recoded to new value of 0. We click Add to action list and the recoding 

appears on the right side of the window. Then we recode Values in range of 2 to 3 

to new value 1, click on Add to action list, and the recoding appears on the action 

list.  We then click Execute. In the worksheet, we click on c14 and rename the 

variable as vpi. 

And finally, gingival thickness might depend, for instance, on (subject level) 

average ppd, bi, or pli. In the Data Manipulation menu, we select MultiLevel 

data manipulations, and from the Operation drop-down list Average and On 

blocks defined by we select id. 

From the drop-down list of Input columns, we select ppd, and c15 from Output 

columns. We Add to action list by clicking on the respective button, where the 

operation appears. Then we select bi from Input columns and c16 from Output 

columns and add this to the action list. And finally, the average pli of each subject 

should be listed in c17. After clicking on Execute, we need to change the names in 

the worksheet accordingly: 
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After we have executed these recoding and manipulation of the data we turn again 

to our variance components model. We click the Add Term button in the model 

equation window and select from the variable drop-down list ppd. The default is 

uncentred, and we just click on Done. The variable appears (in blue) in the 

equation window. In a similar way, we then add bop and vpi and finally aveppd, 

avebi and avepli. When now clicking on the More button in the main window’s 

tool bar, the model is run and instantly converges. 
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Gingival thickness was positively associated with the respective, tooth-level, 

periodontal probing depth . The estimate was 0.333 with a standard error (SE) of 

0.027. A 95% confidence interval (CI) may be calculated by multiplying the SE by 

1.96, i.e. 0.053, and add and subtract this to and from the point estimate, so 0.280 

to 0.386. MLwiN offers a useful tool for calculating the 95% CI. We click in the 

Model menu on Intervals and tests. We want to know the 95% CI for the fixed 

parameter ppd, so we check fixed at the bottom of the window. We then enter 1 for 

fixed: ppd and click Calc. The value of 0.053 for +/- 95% sep. appears at the 

bottom.   

There was a tendency of increased gingival thickness at sites bleeding after 

probing and a positive association with visible plaque. At the subject level, in 

particular average bleeding index and periodontal probing depth were negatively 

associated with gingival thickness (Table 2.2).   
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The random part of the model indicates that, as expected, (unexplained) variation 

at both subject and tooth level was reduced as compared with the null model in the 

previous chapter.  

Table 2.2 Two-level random intercept model of facial gingival thickness 
 
 Estimate 95% confidence interval 
Fixed effects   
Intercept 0.724 0.465; 0.983 
Tooth level   
ppd 0.333 0.280; 0.386 
bop 0.070 -0.018; 0.158 
vpi 0.106 0.044; 0.168 
Subject level   
Average ppd -0.155 -0.313; 0.003 
Average bi -0.341 -0.675; -0.007 
Average pli 0.059 -0.046; 0.164 
Random effects   
Subject (σu0

2) 0.006 0.001; 0.011 
Tooth (σe0

2) 0.149 0.135; 0.163 
-2*log likelihood = 912.656 

 

The likelihood (L) ratio statistic is computed as -2*log L1-(-2*log L2) which, under 

the null hypothesis H0, follows a chi-squared distribution on q degrees of freedom, 

where q is the difference in the number of parameters between the models. So, for 

the two models under consideration here it was 1108.529 - 912.656 = 195.873 with 

6 degrees of freedom. A p-value for the test can be obtained by selecting Tail 

Areas from the Basic Statistics menu. Under Operation, we select Chi-Squared. 
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We type the Value of 195.873 and then 6 for Degrees of freedom. After clicking 

Calculate we obtain an extremely small value for p. Thus, the model was 

significantly improved by adding tooth- and subject-related covariates. 

As a further extension of the model we want to assess the influence of different 

tooth types on gingival thickness. The FDI tooth notation has first to be recoded. 

We click in the Data Manipulation menu recode and select by Value. From 

Source Column we select tooth_no and for Destination Column c20. Old values 

11 and 21 (central incisors in the maxilla) should be changed to 1, old values 12 

and 22 (lateral incisors in the maxilla) to 2 and so forth. Old values 31 and 41 

should be changed to 9, old values 32 and 42 to 10, so that there will be 16 types of 

teeth (since the dentition is symmetric). After we have clicked Execute, we change 

the name of c20 to tooth_type and click Toggle Categorical. 

We now want to add the new variable for tooth type to our model. We click on the 

Add Term button in the model equation window and select tooth_type from the 

drop-down list. Since the variable is now categorical, we are immediately informed 

that tooth type 1 (central incisor in the maxilla) will be the reference category by 

default (from the respective drop-down list of ref. cat. we might select a different 

reference category).  
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In the model equation window, all tooth types are now included in the model. We 

click on the More button in the main window’s tool bar, the model is run and 

instantly converges. Estimates have changed color to green.  

 

 

After tooth type had been included in the model, significant changes have occurred 

to the previously entered periodontal probing depth, bleeding on probing and 

visible plaque index. All respective parameter estimates are largely attenuated. As 

can be expected, the still unexplained variation at the tooth level was also largely 

reduced as compared to the previous model. The likelihood ratio test indicates that 

the model was further improved with a test statistic of 458.752 and 15 degrees of 

freedom. 
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Table 2.3 Two-level random intercept model of facial gingival thickness 
adjusted for tooth type 
 
 Estimate 95% confidence interval 
Fixed effects   
Intercept 0.636 0.397; 0.875 
Tooth level   
ppd 0.067 0.018; 0.116 
bop 0.047 -0.023; 0.117 
vpi -0.011 -0.066; 0.044 
Tooth types   
Upper lateral incisor -0.005 -0.108; 0.098 
Upper canine -0.205 -0.309; -0.101 
Upper 1st premolar -0.222 -0.331; -0.113 
Upper 2nd premolar -0.178 -0.283; -0.073 
Upper 1st molar -0.149 -0.254; -0.044 
Upper 2nd molar -0.055 -0.165; 0.055 
Upper 3rd molar 0.158 0.021; 0.295 
Lower central incisor  -0.259 -0.363; -0.155 
Lower lateral incisor -0.242 -0.346; -0.138 
Lower canine -0.258 -0.362; -0.258 
Lower 1st premolar -0.284 -0.357; -0.175 
Lower 2nd premolar -0.226 -0.331; -0.121 
Lower 1st molar 0.084 -0.020; 0.188 
Lower 2nd molar 0.635 0.526; 0.744 
Lower 3rd molar 0.923 0.773; 1.073 
Subject level   
Average PPD 0.120 -0.019; 0.259 
Average BI -0.395 -0.686; -0.104 
Average PlI 0.125 0.033; 0.217 
Random effects   
Subject (𝜎𝑢02 ) 0.005 0.001; 0.009 
Tooth (𝜎𝑒02 ) 0.091 0.083; 0.099 
-2*log likelihood = 453.904 

A major conclusion may be that gingival thickness is mainly associated with tooth-

related variables. But there are also subject-related factors. For instance, gingiva 
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was thin if average bleeding tendency was higher. Altogether, subject variability of 

gingival thickness, which may be related to the periodontal phenotype, was low. It 

may add to total variance, but to a very low extent of about 4-5%.  

 

2.3 Multilevel Residuals 

When setting up the previous model, we had started with a variance components, 

or null, model given in equation (2.1) 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝑒𝑖𝑖 

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗 

𝑢0𝑗~𝑁(0,𝜎𝑢02 ) 

𝑒𝑖𝑖~𝑁(0,𝜎𝑒2)            (2.1) 

As we have mentioned above, the u0j terms are the subject random effects, or 

subject residuals. In a random effects model, the subject effects are random 

variables whose distribution is summarized by its mean (zero) and variance 𝜎𝑢02 . 

After having run the model, we got the results below. 
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The model is a two-level variance components model, with the overall mean of the 

outcome gingival thickness defined by the fixed coefficient β0. The second level 

was introduced by allowing the mean of the jth subject to deviate from the overall 

mean by u0j, the level 2 residuals. Their mean is zero and in this case their 

estimated variance is 0.008.  

In order to estimate multilevel residuals, suppose that yij is the observed value of 

gingival thickness for the ith tooth in the jth subject and that 𝑦�𝑖𝑖is the predicted 

value from the regression, in the current null model the overall mean of gingival 

thickness. The raw residual for this tooth is 𝑟𝑖𝑖 = 𝑦𝑖𝑖 − 𝑦�𝑖𝑖.The raw residual for 

the jth individual is then the mean of the rij for the teeth in the individual, r+j. The 

estimated level 2 residual for this particular subject is obtained by multiplying r+j 

by what is known as shrinkage factor: 
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𝑢�0𝑗 =
𝜎𝑢02

𝜎𝑢02 + 𝜎𝑒2 𝑛𝑗�
𝑟+𝑗 

Where nj is the number of teeth in subject j. Since the multiplier is always less or 

equal to 1, the estimated residual is usually less in magnitude than the raw residual, 

it has been shrunken. The shrinkage factor will be noticeably less than 1 when  

𝜎𝑒2 is large compared to 𝜎𝑢02 and/or when nj is small. In either case, there is not so 

much information about the subject since variation of the outcome variable is large 

and/or only few teeth were sampled. See for further information on shrinkage 

factor and shrunken residuals also Healy (2001). 

Having estimated the level 2 residuals the level 1 residuals can simply be estimated 

by the formula 𝑒̂𝑖𝑖 = 𝑟𝑖𝑖 − 𝑢�0𝑗 .  

In order look at level 2 residuals we open again the file VCgth01.wsz. We select 

Model in the main menu and then Residuals. We select the Settings tab of the 

Residuals window. The comparative standard deviation (SD) of the residual 

defined as the SD of 𝑢�0𝑗 − 𝑢0𝑗 is used for making inferences about the unknown 

underlying value of u0j, given the estimate 𝑢�0𝑗. The standardized residual is 

defined as 𝑢�0𝑗 𝑆𝑆(𝑢�0𝑗)�  and may be used for diagnostic plotting to ascertain 

Normality etc. From the level drop-down list at the bottom we select 2:no. We 
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may change the multiplier applied to the start output at box to, say, 1.96 to get 

95% confidence intervals. We click the Set column button to specify the columns 

into which the computed values of the function will be placed. Nine boxes will 

appear (from C300 to C308). We then click on Calc. Now we click on the Plots 

tab and select the third option in the single frame (residual +/- 1.96 SD x rank). 

After clicking Apply, the following caterpillar plot appears showing residuals of 

33 subjects with its respective 95% confidence intervals. 
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By clicking the Settings bar and selecting 1:tooth_no in the level drop-down list at 

the bottom, one gets a caterpillar plot of the level-1 residuals. 

 

The estimated residuals can (and should) be used to check model assumption. One 

assumption is that they follow Normal distribution at each level. This can be 

checked using the Normal probability plot, in which the ranked residuals are 

plotted against corresponding points on a Normal distribution curve. The points on 

a Normal plot should lie in approximately on a straight line if the Normality 

assumption is valid. 
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We select from the Model menu Residuals an click on the Settings tab of the 

Residuals window. We select 2:no from the level drop-down list. We click on the 

Set columns button and click on Calc, after that we click on the Plots tab. We 

click on the first option, standardized residual x normal scores and then click 

Apply. 

The points lie in fact more or less on a straight line indicating that the Normal 

assumption was valid. 
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In order to produce a Normal plot of the level 1 residuals, we just repeat the steps 

described above but select from the level drop-down list 1:tooth_no and obtain the 

plot below. We should save the worksheet at this point by clicking on the File 

menu and select Save worksheet as …. We type VCgth01_residuals in the box 

next to Filename and click Save. 
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3 Time Series Models 

In the two previous chapters, observations have been modeled which had been 

made at teeth which were nested in subjects. Now, consider that observations had 

been repeated in a longitudinal way, for example after therapy. For that purpose, 

we want to define a lower level (one) as repeated measures, or occasion, while 

teeth and subjects would define levels two and three, respectively.   

Consider, for instance changes of the entire gingival unit after the implantation of a 

bio-resorbable membrane for surgical root coverage employing the principle of 

guided tissue regeneration. Apart from achievable root coverage, the implantation 

of the membrane and concomitant coronal advancement of the mucoperiosteal flap 

leads to an immediate increase in thickness of gingiva and later in width of 

keratinized tissue. Of course, the mucogingival border is displaced but may re-

establish itself later in its original position. Note that these alterations at teeth are 

non-linear and, since wound healing proceeds and regenerated tissue matures over 

time, non-monotonic (see example (C) in Fig. 13.1 in Rasbash et al. 2015). And 

they certainly depend on the subject. So, we have a three-level structure with a 

sample of subjects in which we study gingival dimensions at teeth, which have 

been surgically treated, over time. The data had been analyzed by multilevel 

modeling in some detail by Müller (2008).  
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In this chapter we want to introduce the data set which had been created in a 

longitudinal study (Müller et al. 2000d) and set up several multilevel models 

further elaborating the basic time series model. 

 

3.1 Repeated Measures Data on Gingival Dimensions after Surgical Root 

Coverage 

The data set consists of observations which have been made in 14 patients who had 

presented with a large variety of recession types at altogether 31 teeth. They had 

been treated according to the principles of guided tissue regeneration employing a 

bio-resorbable membrane. Surgical root coverage consisted, after periosteal 

dissection, of a coronally advanced flap which was secured with sling sutures. 

Several preoperative clinical parameters and intrasurgical observations were 

assessed. Patients were followed up for 1 year, and re-examinations of the clinical 

situation were carried out after 3, 6, 9 and 12 months. 

An EXCEL file (dimension.xlsx) contains the following primary variables:  
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Variable Description 
ID Subject’s identifier (1-14) 
TOOTH FDI notation of teeth (11-48)  
GI Gingival index (0-3)  
PLI Plaque index (0-3)  
RD  Recession depth (mm) 
RW Recession width (mm) 
GW Gingival width (mm) 
MILLER  Miller’s classification  of recession (1-4) 
GTH1 Gingival thickness (mm) at the gingival margin 
GTH2 Gingival thickness (mm) at the mucogingival border 
GTH3 Thickness of the lining mucosa (mm) 
PD Probing depth (mm) 
DEHIS Bony dehiscence (mm) from the cement-enamel junction 

as measured intrasurgically 
 

Certain secondary variables, which were composed of primary variables, such as 

clinical attachment level (CAL), the width of attached gingiva (AG), the location 

of the mucogingival border (MGB) and the true bony dehiscence (DEHISTRUE), 

are not further discussed here. 

Except for DEHIS which was measured only intrasurgically, all variables were 

assessed at baseline (0) and after 3, 6, 9 and 12 months. GI, PLI, PD were 

measured at mesio-buccal (M), mid-buccal (B) and disto-buccal aspects (D) of 

every treated tooth. RD and GW were measured mid-buccally. RW was the 
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distance between the intersections of the cemento-enamel junction and the gingival 

margin.  

Now, in order to import the data to MLwiN, we have to copy them to the clipboard. 

From the File menu we select New worksheet, and from the Edit menu Paste. 

The Paste View Window appears and the Use first row as names at the bottom is 

already tagged. We click Paste, and the created MLwinN worksheet appears which 

we want to save, dimension_01.wsz. 
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Note that several data points are missing. While in any longitudinal study 

participants may leave the study or miss one or more examination occasions, one 

may assume that the probability of being missing is independent of any random 

variables in the model, i.e. completely random dropout. If the missing mechanism 

depends on observed measurement one might assume random dropout. As long as 

a full information estimation procedure is used (as is the case with maximum 

likelihood for Normal data in MLwiN), the actual mechanism of missing can be 

ignored (see Rasbash et al. 2015, p. 196). Moreover, in multilevel structures we do 

not require balanced data to obtain efficient estimates. So, it is not necessary to 

have the same number of lower-level units within higher-level units. To check, we 

may tabulate the numbers of treated teeth by subjects. We may click on the Basic 

Statistics menu and on Tabulate in the drop-down list. While the default for 

Columns is already ID, we check the box labeled Rows, select TOOTH and click 

Tabulate. So, between 1 and 8 teeth per subject had been treated by root coverage 

with a median of just 1.5. 

 

3.2 Some Basic Models 
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To have a closer look at the above worksheet, we may click on View in the Data 

menu and on view where we mark all of the appearing variables in the drop-down 

list.  

 

We notice that most variables have been assessed five times, at baseline (0), and 3, 

6, 9 and 12 months after surgery. However, as the data are arranged in the 

worksheet (each row of the rectangular array corresponds to a certain tooth which 

has been treated by surgery and contains all data of that particular tooth) the 

hierarchical structure of the data is not reflected.  

 

3.2.1 Setting up the data structure 

In order to transform a tooth’s data record into separate records (or rows) for each 

occasion, we want to split the records. Thus, in the main menu we click on Data 

manipulation and select Split records. The following window appears.  
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Since data were recorded five times, we set 5 in Number of occasions. The 

Number of variables to be split is set 18. In the Stack data grid we click on 

Variable 1 and select in the drop-down the five variables GIM0, GIM3, GIM6, 

GIM9, and GIM12. Then we click Done. We repeat the two above steps for 

Variable 2 (GIMB0 …GIMB12), and all the other variables to be stacked. 

Eventually we want to stack the data into free columns c96 to c113. For that 

purpose we click in the Stacked into row of the Stack data grid and select in the 

appearing drop-down lists the respective columns c96 … c113. We tick the 

Generate indicator column check box and select, in the neighboring drop-down 

list, c114 for the five occasions. 
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Four variables have to be repeated (carried data). In the Repeat (carried data) 

frame, we select ID, TOOTH, MILLER, DEHIS, and DEHISTRUE as input 

columns and assign to them c115 …c119 as the respective outputs.  

 

 

We then click the Split button to execute the changes. Before saving the 

worksheet, we want to first assign names to columns c96 … c119 and thus select 

No when being asked whether we want to save the worksheet. After having 

renamed the respective columns, the worksheet, which should now be saved under 

a different name, for instance dimension_02.wsz, looks as follows. 
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Next, we want to recode the categorical occasion variable OCC (1-5) into the 

continuous TIME variable (0, 3, 6, 9 and 12 months) first. For that purpose, in the 

Data manipulation menu we click recode, and, from the drop-down list, by 

value. We select OCC from the Source column and enter New values 0, 3, 6, 9, 

and 12, respectively. We select c120 as Destination Column and click execute. 

We then click on Names and rename the column TIME.  
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We can now almost set up a simple variance components model but still have to 

create a constant column (CONS).  We access the Generate Vector window via 

the Data Manipulation menu. We select c121 as Output column, type 155 next 

to Number of copies and assign the Value of 1 to them. We click on Generate 

and rename the column as before, CONS. Now we want to save the worksheet, for 

instance as dimension_03.wsz. 

 

3.2.2 Variance components models 

We start by exploring how the total variance of, say, gingival thickness at the 

gingival margin (GTH1) is partitioned into three components: between subjects, 

between teeth treated for gingival recession within subjects and between occasions 

within teeth within subjects. This variance components model provides a baseline 

for more complex models (see chapter 2). We may define this model and display it 

after clicking on Model in the main menu and then Equations.  
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We click on y and select from the drop-down list in the appearing window GTH1. 

From N-levels we select 3-ijk and select level 3(k) ID2, TOOTH2 for level 2(j), 

and TIME for level 1(i). We then click Done. In the Equations window, we click 

on x0 and select CONS from the drop-down list. We tick all three check boxes for 

k(ID2), j(TOOTH2) and i(TIME) and click Done. At the bottom of the 

Equations window we click twice on + and then on Estimates.  
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We now click on Start in the main menu and the model instantly converges. 

Clicking again on Estimates gives the following results. 



57 
 

 

As the intercept β0ij reveals, the mean value for gingival thickness at the gingival 

margin is 1.112 mm (SE 0.057). The variation between occasions within teeth 

within subjects is large, 0.161 with a SE of 0.020, as compared to the variation at 

the tooth level, 0.058 (0.028) while variation at the subject level is very low, 0.003 

(0.016). The likelihood statistic (-2 loglikelihood), found at the bottom of the 

Equation window (189.953), can be used as basis when assessing the more 

elaborate models to come. 
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3.3 Modeling Repeated Measures Nonlinear, Non-monotonic Responses 

Mucosal thickness after implantation of a bio-resorbable membrane is expected not 

to be linear over time. One simple way of introducing nonlinearity is to define  

quadratic and cubic terms for TIME. From the Data manipulation menu, we 

select the Command interface and type calc c122 = ‘TIME’^2 and thereafter calc 

c123 = ‘TIME’^3 in the bottom box. We rename the columns to TIMESQ and 

TIMECB, respectively, and save the model.   

We then add TIME, TIMESQ and TIMECB to the model, and click on More, 

which yields the following results. 

 

Apparently, gingival thickness at the gingival margin (GTH1) increased by an 

estimated 0.371 mm per month (TIMEijk). However, deceleration was considerable 

with -0.069 mm per month squared, and the cubic term was 0.003. The standard 
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errors of 0.049, 0.010 and 0.001, respectively, may be used to determine 95% 

confidence intervals. For that purpose, we click in the main menu on Model and 

select Intervals and tests. At the bottom, we check fixed, enter 3 in # of functions 

and 1 in column #1, fixed:TIME, 1 in column #2, fixed:TIMESQ, and 1 in 

column #3, fixed:TIMESCB. When we then click on Calc, the following window 

will appear. 

 

For each column the function is formed by multiplying the value in each row by 

the coefficient estimate and summing these to give the function result(f). A large 

sample chi squared test statistic is computed testing f-k=0 where k may also be 
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specified - the default being zero. The row +/- 95% sep. is a Normal 

approximation 95% confidence interval for f-k. The row +/- 95% joint is a joint 

95% interval for the set of functions specified. The joint chi sq test (2df) row is a 

large sample joint test for the triplet of functions f-k=0.  

Based on the information given (+/- 95% sep. equal 0.096, 0.020, and 0.001, 

respectively) we may calculate 95% confidence intervals for the set of functions 

specified, i.e. for TIMEijk (0.275; 0.467 mm), TIMESQijk (-0.089; -0.049 mm), and 

TIMECBijk (0.002; 0.004 mm). (Note that adjustment for multiple testing may be 

done by using joint estimates for 95% confidence intervals.) A glance at the 

random part of the model reveals that 59% of the unexplained variance of gingival 

thickness at the gingival margin is still found at the occasion level, i.e. 

0.104/(0.003+0.070+0.104);  and 40% at the tooth level. 

Now we want to have a look at, say, level 2 residuals. For that purpose, we select 

Model in the main menu and then Residuals. We select the Settings tab of the 

Residuals window. From the level drop-down list at the bottom we select 

2:TOOTH2. We change the multiplier applied to the start output at box to 1.96 

to get 95% confidence intervals. We click the Set column button to specify the 

columns into which the computed values of the function will be placed (the nine 

boxes from C300 to C308). We then click on Calc. Now we click on the Plots tab 

and select the third option in the single frame (residual +/- 1.96 SD x rank). The 
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following caterpillar plot appears showing residuals of 31 teeth with its respective 

95% confidence intervals. 

 

We may now check the assumption that estimated residuals follow Normal 

distribution at each level. For that purpose we have a look at the Normal 

probability plots, in which the ranked residuals are plotted against corresponding 

points on a Normal distribution curve. The points on a Normal plot should lie 

approximately on a straight line if the Normality assumption is valid. Since we 

have already calculated level 2 residuals (TOOTH2), we may check them first. We 

click on the first option, standardized residual x normal scores, and then click 

Apply.  

 



62 
 

 

Since the points lie more or less on a straight line this indicates that the Normal 

assumption was valid. 

Our principle interest lies in how gingival thickness of individual patients varies 

over time after surgical implantation of a bio-resorbable membrane. We can easily 

display estimated patterns (predictions) for selected patients. For example, to plot 

the lines for seven patients with ID 7, 8, 9, 10, 11, 12 and 13, we may set up a filter 

column, say c130, which is 1 if the record belongs to one of these individuals and 

zero otherwise. We click on Data Manipulation in the main menu, click on 

Calculate and select c130 from the drop-down list of columns. We type ‘c131’ = 

“ID2” >=7 & “ID2” <14 and click on Calculate. In the Model menu we open the 

Predictions window and compute predicted values using the fixed part coefficients 

plus level 3 random coefficients. We want to place the results in column 131. 
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Now we open the Customized graph window and make the following selections 

on plot what?: c131 for y, TIME for x, c130 as the filter, ID2 as the group 

variable and line as the plot type. In the colour selector on the plot style tab, we 

select 16 rotate and click on Apply. The following graph appears. 
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Since during the surgical operation the entire mucoperiosteal flap was coronally 

advanced, we would not expect any postoperative changes of gingival width. In 

order to check this, we may click on the response GTH1 in the model, select in the 

appearing drop-down menu instead GW (gingival width) and click done. We then 

click on More, and the model converges instantly. Standard errors of TIME, 

TIMESQ and TIMECB are larger or much larger than very small estimates, so it 

may be concluded that there was hardly any influence of time on gingival width.  

The position of the mucogingival border relative to the cemento-enamel junction is 

a different story, though. A specific model might answer the questions as to how 

much the mucoperiosteal flap was raised and to what extent would a postoperative 

relapse occur. The respective model is shown below. 

 

There was a great postoperative shift of the mucogingival border toward the 

cemento-enamel junction of 0.670 mm per month (95% confidence interval -1.050; 
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-0.290). However, deceleration (TIMESQ) was considerable, 0.107 mm (0.027; 

0.187), as was the cubic term for TIME. Again, most of the unexplained variation 

(54%) was at the occasion level, while 36% was observed at the tooth level.  

The results of the three models so far are displayed in Table 3.1. 

Table 3.1 Three-level (occasion, tooth, subject) time series models of gingival 
thickness at the gingival margin (GTH1), gingival width (GW), and location of the 
mucogingival border in relation to the cement-enamel junction (MGB). 
 
 Estimate (SE) 
 GTH1 GW MGB 
Fixed effects    
Intercept β0ijk 0.838 (0.077) 1.853 (0.234) 4.641 (0.341) 
t (months) 0.371 (0.049) -0.034 (0.147) -0.670 (0.194) 
t2 -0.069 (0.010) 0.018 (0.031) 0.107 (0.041) 
t3 0.003 (0.001) -0.001 (0.002) -0.005 (0.002) 
Random effects    
Subject (𝜎𝑣02 ) 0.003 (0.016) 0.229 (0.167) 0.291 (0.398) 
Tooth (𝜎𝑢02 ) 0.070 (0.027) 0.149 (0.116) 1.086 (0.452) 
Occasion (𝜎𝑒02 ) 0.104 (0.013) 0.948 (0.120) 1.646 (0.209) 
-2*log L 136.157 461.053 567.148 
 

It may be checked whether the TIME coefficients vary across subjects in the 

respective models, i.e. whether a random coefficient model fits better. This random 

coefficient model may be written as follows. 

𝑦𝑖𝑖𝑖 = �𝛽ℎ𝑘

3

ℎ=0

𝑡𝑖𝑖𝑖ℎ  

𝛽0𝑘 = 𝛽0 +  𝑣0𝑘 + 𝑢0𝑗𝑗 + 𝑒0𝑖𝑖𝑖 
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𝛽1𝑘 = 𝛽1 + 𝑣1𝑘; 𝛽2𝑘 = 𝛽2; 𝛽3𝑘 = 𝛽3 

�𝑣0𝑣1�~𝑁(0, Ω𝑣); Ω𝑣 = � 𝜎𝑣0           
2

  𝜎𝑣01 𝜎𝑣12
� 

𝑢0~𝑁(0,𝜎𝑢02 ); 𝑒~𝑁(0,𝜎𝑒2)    (3.2) 

To set up this model, we click on TIME, check the box k(ID2) and click on done. 

While the subject variance in the above random intercept model for GTH1 is very 

small, a random coefficient model won’t make sense. In case of GW, however, the 

likelihood (L) ratio statistic, which is computed as -2*log L1-(-2*log L2), is at least 

6.261. In Basic statistics in the main menu we click Tail Areas. The default chi 

squared is already tagged and we enter the Value of 6.261 and, in Degrees of 

Freedom we enter 2, since there are 2 additional parameters, a variance estimate 

for TIME and a covariance estimate for CONS and TIME. By clicking on 

Calculate we get a probability of about 0.044. So, this model does marginally 

better fit than the previous one.  
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There is little evidence that the TIME coefficient varies across subjects in case of 

MGB, the likelihood ratio statistic is just 3.915 with 2 degrees of freedom (p = 

0.141).  

Apart from gingival parameters we may be interested in recession depth and how 

postoperative root coverage and relapse can be modeled in a time series model. We 

just click again on the response variable in the model and select RD (recession 

depth) from the drop-down list and click on done. We run the model by clicking 

on More and get the results below. 

 

We may let the TIME coefficient vary across subjects and introduce complex level 

1 variation, i.e. we would expect that both level 3 and level 1 variances to be non-

constant. We click on TIME and check the boxes k(ID2) and i(OCC) in the 

window.   
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There are 4 further terms in the model (4 df) and the likelihood statistic for the two 

models is 361.233-344.401 = 16.832. We can check for a p-value by entering the 

statistic and degrees of freedom in the Tail Areas window in Basic Statistics. 

Thus, the model fits significantly (p=0.002) better than the previous one.  

The graph below displays predictions for RD of all 14 individuals over time based 

on the final model. 
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So far, we have set up basic and more complex repeated measures time series 

models which allowed the assessment of the effect of time on, for instance, 

gingival parameters and recession depth. In the next chapter, we want to extend 

these models by including various other covariates and, in particular, considering 

multivariate responses.  
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4 Multivariate Response Models 

In the previous chapter, increasingly complex time series models have been set up 

in order to model gingival thickness, its width, the position of the mucogingival 

border relative to the cemento-enamel junction, and gingival recession after 

surgical implantation of a bio-resorbable membrane for guided tissue regeneration 

for the treatment of gingival recession. While some of these variables, such as 

thickness and width of gingiva might be positively related, others are not, for 

example gingival thickness and recession. Mucosal thickness had been measured at 

three locations: at the gingival margin, as well as at and below the mucogingival 

border (Müller et al. 2000d). In order to create general predictions of alterations of 

gingival dimensions after surgery, one single model would be preferred which 

might include mucosal thickness as measured at different locations as three 

different responses. 

Multivariate response data are most conveniently incorporated into a multilevel 

model by creating a lower level below the original level 1 units. This will define 

the multivariate structure. Here we want to set up a 4-level model with multivariate 

responses (level 1) measured at different occasions (level 2) nested in higher-level 

units, i.e. teeth (level 3) and patients (level 4).  
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Measurements or assessments of a couple of primary variables (see below) have 

been done five times during 12 months: before surgery and every three months 

after surgery.   

Variable Description 
ID Subject’s identifier (1-14) 
TOOTH FDI notation of teeth (11-48)  
GI Gingival index (0-3)  
PLI Plaque index (0-3)  
RD  Recession depth (mm) 
RW Recession width (mm) 
GW Gingival width (mm) 
MILLER  Miller’s classification  of recession (1-4) 
GTH1 Gingival thickness (mm) at the gingival margin 
GTH2 Gingival thickness (mm) at the mucogingival border 
GTH3 Thickness of the lining mucosa (mm) 
PD Probing depth (mm) 
DEHIS Bony dehiscence (mm) from the cement-enamel junction 

as measured intrasurgically 
 

Secondary variables were composed of primary variables and the reader is referred 

to Chapter 3 for further information. 

All data are stored in dimension_04.wsz. Note that the data structure has already 

been set up for repeated measures, i.e. a tooth’s data record has been transformed 

into separate records (or rows) for each occasion.  
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We want to model m=3 responses (GTH1, GTH2 and GTH3) simultaneously in a 

multivariate model. Each level 1 measurement “record” has a response which is 

either gingival thickness at the gingival margin (GTH1) or at the mucogingival 

border (GTH2), or thickness of the lining mucosa below the mucogingival border 

(GTH3). Hence, the basic explanatory variables are a set of two dummy variables 

zmjkl that indicate which response variable is present. Repeated measures are treated 

as level 2 units, surgically treated teeth as level 3 and patients as level 4 units. 

The multivariate, three level (occasion, tooth, subject), time series random 

intercept model including a squared and cubic term for time (t) in months may be 

written as (4.1) 
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𝑦𝑗𝑗𝑗~𝑁(𝑋𝑋, Ω) 

𝑦𝑗𝑗𝑗 = ��𝛽m𝑗𝑗𝑗

3

𝑛=1

3

ℎ=0

𝑡𝑗𝑗𝑗ℎ 𝑧𝑛𝑛𝑛𝑛 

𝑧1𝑗𝑗𝑗 = �
1 if m = 0
0 if m = 1
0 if m = 2

� ;  𝑧2𝑗𝑗𝑗 = �
0 if m = 0
1 if m = 1
0 if m = 2

� ; 𝑧3𝑗𝑗𝑗 = �
0 if m = 0
0 if m = 1
1 if m = 2

� 

𝛽0𝑗𝑗𝑗 = 𝛽0 +  𝑓0𝑙 + 𝑣0𝑘𝑘 + 𝑢0𝑗𝑗𝑗 

𝛽1𝑗𝑗𝑗 = 𝛽1 +  𝑓1𝑙 + 𝑣1𝑘𝑘 + 𝑢1𝑗𝑗𝑗 

𝛽2𝑗𝑗𝑗 = 𝛽2 +  𝑓2𝑙 + 𝑣2𝑘𝑘 + 𝑢2𝑗𝑗𝑗 

�
𝑓0𝑙
𝑓1𝑙
𝑓2𝑙
�~ (𝑁, Ω𝑓); Ω𝑓 = �

𝜎𝑓0           
2

 𝜎𝑓01 𝜎𝑓1
2           

 𝜎𝑓02 𝜎𝑓12 𝜎𝑓22
� 

�
𝑣0𝑘𝑘
𝑣1𝑘𝑘
𝑣2𝑘𝑘

�~ (𝑁, Ω𝑣); Ω𝑣 = �
𝜎𝑣0           
2

 𝜎𝑣01 𝜎𝑣12
          

 𝜎𝑣02 𝜎𝑣12 𝜎𝑣22
� 

�
𝑢0𝑗𝑗𝑗
𝑢1𝑗𝑗𝑗
𝑢2𝑗𝑗𝑗

�~ (𝑁, Ω𝑢); Ω𝑢 = �
𝜎𝑢0           
2

 𝜎𝑢01 𝜎𝑢12
          

 𝜎𝑢02 𝜎𝑢12 𝜎𝑢22
�   (4.1) 

 

There are several interesting features of this model. First, there is no level 1 

variation specified because level 1 solely defines the multivariate structure. The 

higher level variances and covariances are the residual between-occasion, between-

teeth and between-subject variances, respectively. The formulation of this 3-level 

model allows for the efficient estimation of a covariance matrix with missing 

responses as long as “missing” responses are considered as random. In the case 
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where measurements have a multivariate Normal distribution, IGLS/RGLS 

provides maximum likelihood estimates. Thus, studies can be designed where not 

every individual has every measurement, with measurements randomly allocated to 

individuals. Such “rotation” or “matrix” designs are common in many areas and 

may be modeled in this way.  

 

4.1 Setting up a Basic Multivariate Model 

When clicking on Equation in the Model menu, the random intercept time series 

model of GTH1 from the previous Chapter 3 appears. Before setting up the model 

described in formula 4.1 in MLwiN, we start with a variance components (or null) 

model without covariates. We therefore click on Clear at the bottom of the 

Equation window. 

After clicking on Responses we select GTH1, GTH2 and GTH3. We Add Term 

CONS from the drop down menu and click on add Separate coefficients.  (Note 

that uncentred is the default.) In order to set up the multilevel structure we click 

on resp1 and select for N-levels 4-ijkl. We select ID2 for level 4(l), TOOTH2 for 

level 3(k), and OCC for level 2(j) and click on done. We then click on the beta 

coefficients and check the boxes for l(ID2_long), k(TOOTH2_long) and 

j(OCC_long), respectively. We click on done and then twice on Estimates at the 
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bottom of the equation window. We run the model by clicking on the Start button. 

The model converges instantly.   
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4.2 A Multivariate Time Series Model 

We now want to add successively TIME, TIMESQ and TIMECB (see Formula 

4.1). We click on Add Term and select the respective variable (one after the 

other) from the drop-down list and click on add separate coefficients. After 

having clicked on More the model converges without problems. 

In order to predict responses before and after surgical root coverage in different 

jaws (mandible or maxilla) and taking into account the different situations of 

baseline gingival width, we want to add further variables. In Data Manipulation, 

we click on recode and select By range. We select TOOTH2 in Input columns 

and c141 in Output columns. Values in range of 11 to 28 get the new value of 0. 

We click on Add to action list where the Recode Specification appears on the 

right side. Values in range of 31 to 48 get the new value of 1.  We click on 

Execute and change the name of c141 to JAW (the reference will be teeth in the 

maxilla).  

Baseline GW has to be repeated, or carried (see Chapter 3). We click on Data 

Manipulation and select Split records. We select in Repeat (carried) Data at the 

bottom the Input column GW0 (i.e. baseline gingival width) and c142 as Output 

column. (Note that, in order to execute the command, one has to Stack repeated 

data of a variable again, for instance GIM0 …GIM12, into the variable GIM. So, 
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we enter 5 in Number of occasions and then GIM0 …GIM12 into Occasion 

1…5.) We can then click on Split and on No in the appearing window when asked 

whether we want to save the worksheet now. We rename c142 to GWBASE. 

Now we enter JAW and GWBASE into the model together with respective 

interactions with TIME, TIMESQ and TIMECB. For the latter, after having 

clicked on Add Term at the bottom of the equation window we enter 1 next to 

order and, for instance JAW and TIME as variables. The interaction term will 

appear in the equation when having clicked on add Separate coefficients. We may 

click on Zoom at the bottom of the equation window and enter, for instance, 70 to 

reduce the font size. For Estimation control, we choose RIGLS (restricted 

iterative generalized least squares) which leads to unbiased estimates of random 

parameters. We check the box suppress numeric warnings, click on done and run 

the model by clicking on More. After a few iterations, the model had converged, 

see below.  
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We want to save worksheet and model as dimension_05.wsz. 

Table 4.1a lists fixed effects of the above multivariate, 3-level (occasion, tooth, 

subject), time series, random intercept model of mucosal thickness at the gingival 

margin (GHT1), at the mucogingival border (GTH2), and of the alveolar lining 

mucosa (GHT3).  

To calculate 95% confidence intervals we may click on Model in the main menu 

and Intervals and tests. We enter 1 in respective cells, click Calc at the bottom 

and get the respective 95% confidence intervals. Considerable linear increase in 

mucosal thickness with time of between 0.757 (0.573; 0.941) mm and 1.092 

(0.846; 1.338) mm after implantation of a bio-absorbable membrane was 

accompanied by highly significant deceleration (between -0.143 and -0.202 mm x 

month squared), while the cubic term was highly significant as well. 
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Table 4.1a Fixed effects estimates (SE) of multivariate, three-level (occasion, 
tooth, subject) time series, random intercept  model of mucosal thickness at the 
gingival margin (GTH1), at the mucogingival border (GTH2), and of the alveolar 
lining mucosa (GTH3) 
 
 Estimate (SE) 
 GTH1 GTH2 GTH3 
Intercept βmijk 0.556 (0.160 0.583 (0.203) 0.675 (0.217) 
ta (months) 0.757 (0.094) 1.092 (0.126) 0.965 (0.161) 
t2 -0.143 (0.020) -0.202 (0.026) -0.169 (0.033) 
t3 0.007 (0.001) 0.010 (0.001) 0.008 (0.002) 
JAWb 0.215 (0.160) 0.142 (0.200) 0.086 (0.220) 
t x JAW -0.457 (0.099) -0.431 (0.128) -0.139 (0.163) 
t2 x JAW 0.087 (0.021) 0.082 (0.027) -0.028 (0.034) 
t3 x JAW -0.004 (0.001) -0.004 (0.001) 0.001 (0.002) 
GWc 0.114 (0.056) 0.063 (0.069) 0.025 (0.075) 
t x GW -0.117 (0.034) -0.154 (0.044) -0.142 (0.056) 
t2 x GW 0.023 (0.007) 0.032 (0.009) 0.026 (0.012) 
t3 x GW -0.001 (0.000) -0.002 (0.000) -0.001 (0.001) 
a Time (months) 
bMandible = 1; maxilla = 0 
c Baseline gingival width (mm) 

While mucosal thickness was not significantly greater at mandibular teeth in 

general, the interaction with time was negative and highly significant for gingival 

thickness at the gingival margin and at the mucogingival border (-0.457 and -

0.431, respectively) with significant quadratic and cubic terms. Baseline gingival 

width was significantly associated with gingival thickness as measured at the 

gingival margin (0.114 mm). This influence decreased drastically with time after 

surgery (-0.117 mm), with quadratic and cubic terms being also significant. 

Random effects of the model are listed in Table 4.1b.  



80 
 

 

 

Table 4.1b Random effects estimates (SE) of multivariate, three-level (occasion, 
tooth, subject), time series, random intercept model of mucosal thickness at three 
locations 
 
  Estimate (SE) 
 Parameter GTH1 GTH2 GTH3 
Subject  𝜎𝑓𝑓,m2  0.024 (0.020) 0.026 (0.023)  
 𝜎𝑓𝑓,𝑚,𝑚+1 0.026 (0.020)   
Tooth 𝜎𝑣𝑣𝑣,m2  0.055 (0.022) 0.083 (0.033) 0.064 (0.029) 
 𝜎𝑣𝑣𝑣,𝑚,𝑚+1 0.067 (0.020) 0.066 (0.025  
 𝜎𝑣𝑣𝑣,𝑚,𝑚+2 0.048 (0.020)   
Occasion 𝜎𝑢𝑢𝑢𝑢,m2  0.089 (0.011) 0.139 (0.018) 0.223 (0.029) 
 𝜎𝑢𝑢𝑢𝑢,𝑚,𝑚+1 0.039 (0.011) 0.041 (0.017)  
 𝜎𝑢𝑢𝑢𝑢,𝑚,𝑚+2 0.022 (0.013)   
 

Variances and covariances at the subject level were not significant. At the tooth 

level, the significant covariances for thickness at different locations, say m and n, 

yielded very high correlation coefficients as calculated by 𝑟𝑚,𝑛 = 𝜎𝑚,𝑛/

(�𝜎𝑚2 × 𝜎𝑛2). MLwiN allows us to instantly check correlations from the covariance 

matrix. For that purpose we open Estimate tables in the Model menu in order to 

get estimates. We select Level 3: TOOTH2_long and check box C (for 

correlation).  
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As can be seen in the window, correlations vary between 0.983 for GTH1 and 

GTH2, and 0.806 for correlations between GTH1 and GTH3. Thus, even thickness 

of lining mucosa was highly correlated with gingival thickness at both 

measurement locations. At the occasion level, correlations were essentially weaker, 

see below. 

Before calculating predictions, we want to check whether estimated residuals 

follow a Normal distribution at each level.  We want to have a look at the Normal 

probability plots, in which the ranked residuals are plotted against corresponding 

points on a Normal distribution curve. The points on a Normal plot should lie 

approximately on a straight line if the Normality assumption is valid. In the two 

plots below occasion level and tooth level estimates of residuals lie more or less on 

straight lines, not invalidating the Normality assumption.  
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4.3 Predictions 

Predictions of mucosal thickness can easily be derived from the model. We open 

Intervals and tests from the Model menu, check fixed at the bottom and enter, 

say 3 in # of functions. We are interested in gingival thickness at the gingival 
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margin of maxillary teeth at baseline and how it relates to gingival width in 1-mm 

steps. So, we enter 1 for CONS.GTH1 and 1, 2, or 3 for GWBASE.GTH1, 

respectively. 

 

When we click on Calc we get the following results. 
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So, for maxillary teeth, gingival thickness at the gingival margin was estimated as 

0.670 (95% confidence interval 0.431; 0.909) mm in case of 1-mm-wide gingiva, 

0.784 (0.587; 0.981) mm at 2-mm wide gingiva, and 0.898 (0.687; 1.109) mm at 3-

mm-wide gingiva. Consider mucosal thickness of lining mucosa 3 months after 

surgery at mandibular teeth where baseline gingival width was 1 mm.  
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If one enters the product of the respective conditions into function #4, one gets an 

estimate (prediction) of 2.343 (2.067; 2.616).  Ninety-five per cent confidence 

intervals were in general low, ±0.2-0.3 mm at maxillary teeth and ±0.4-0.5 mm at 

teeth in the mandible.  In the maxilla mucosal thickness at all measurement 

locations peaked 3 months after surgery with negative correlations with baseline 

gingival width. Thereafter, thickness gradually decreased but remained higher 

(about 0.3-0.5 mm) than before surgery, while positive correlations with baseline 
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gingival width were re-established. At mandibular teeth, gingival thickness did not 

change so dramatically, while thickness of lining mucosa underwent similar 

changes as at maxillary teeth.  

Fig. 4.1 displays mucosal thickness at three different locations (at the gingival 

margin (GTH1), at the mucogingival border (GTH2), and of the lining mucosa 

(GTH3) before and 3, 6, 9, and 12 months after surgical root coverage in relation 

to baseline gingival width (GW) and jaw. It has been created in PowerPoint after 

all predictions had been calculated.  

 

Fig. 4.1 Modeling longitudinal gingival/mucosal thickness in relation to preoperative 
gingival width (GW) at three locations (GTH1-3) after implantation of a bio-resorbable 
membrane for surgical root coverage (Müller 2008). 
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One may intuitively compare the multilevel model with a microscope here since 

raw data or presentation of means and standard deviations would hardly give a 

similarly elegant impression of what is actually going on after implantation of a 

bio-resorbable membrane for surgical root coverage employing guided tissue 

regeneration. 
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5 Logistic Models for Binary and Binomial Responses 

In the previous chapters, continuous response variables had been considered in 

various variance components, random intercept, random coefficient, time series, 

and multivariate time series multilevel models. In this chapter, we want to look at 

binary or binomial (proportion) responses. We will mainly focus on the logit link 

function. As usual, we start with a single-level model and extend this to 

appropriately consider the three-level hierarchical structure. We also explore 

contextual effects here. Significance testing and model interpretation using odds 

ratios and variance partition coefficients are discussed.    

 

5.1 Description of the Example Data Set 

The data for an example are stored in an EXCEL file (bop_pli01.xlsx). The binary 

response variable here is presence or absence of bleeding on probing (BOP) at 

gingival units in 50 students at Kuwait University. All had plaque-induced gingival 

disease.  

Variable Description 
ID Subject’s identifier (1-50) 
GENDER (0, 1) 
AGE In years 
TOOTH_NO FDI notation of teeth (11-48)  
TYPE Tooth type (1-16) 
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SITE Tooth site (1-6) 
PPD  Periodontal probing depth (mm)  
CAL Clinical attachment level (mm) 
BOP Bleeding on probing (0, 1) 
PLI  Silness & Löe’s plaque index (0-3) 
CLS Presence of calculus (0,1) 
 

The cohort consisted of 16 male and 34 female dental students. They were between 

19 and 28 years of age.  

After we have opened a new worksheet in MLwiN by clicking on File in the main 

menu and New worksheet, we can easily import the EXCEL data just by copy 

them to the clipboard and paste them into MLwiN. For that we click on Edit in the 

main menu and Paste. We check the box Use first row as names in the new 

window and click Paste. We want to Save the worksheet in the File menu as 

bop01.wsz. 

The main objective for the present analysis is to get an idea about the association 

between (supragingival) plaque and gingival bleeding after probing (BOP), a 

measure of gingival inflammation. Since the disease is called “plaque-induced”, 

we would expect a strong association. As a first step, let us tabulate BOP by 

ordinal scores describing the amount of supragingival plaque at the gingival 

margin, i.e. Silness and Löe’s plaque index of 1963 (PLI). We click in Basic 

Statistics in the main menu and select Tabulate. Note that the default Output 
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mode is Counts. We type next to Columns PLI, check the Rows box and type 

BOP. We click on Tabulate and get the result below. 

 

What has been expected is that most sites without plaque or small (invisible, if not 

disclosed with a dye) amounts of plaque (PLI scores of 0 or 1) do not bleed after 

probing. But the vast majority of sites with considerable plaque (PLI score of 2) 

and the majority of sites with even abundance of plaque (PLI score of 3) did not 

bleed upon probing either. In order to make things easier, we want to collapse 

plaque index scores of 0 and 1 (which is usually not visible) and plaque index 

scores of 2 and 3, and create a new variable, the visible plaque index (Ainamo and 

Bay 1975). We click on recode and by range in Data Manipulation of the main 

menu. We select PLI for Input columns and type next to the boxes of the Recode 

specification for values in range 0 to 1 and type 0 next to new value.  In Output 
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columns we select c12 and click on Add to action list. Next we assign 1 for 

Values in range of 2 to 3 in the to new value box. We click on Add to action list 

and on Execute in the right window. We should rename column c12 to VPI by 

clicking on Name in the Column menu. We now want to tabulate BOP by VPI. 

 

The data suggest a moderate association. The odds ratio can be calculated as  

3970
785�

2923
1082�

 = 1.872. An asymptotic approximation of the standard error of the log 

odds ratio is 𝑆𝑆 = � 1
𝑛11

+ 1
𝑛10

+ 1
𝑛01

+ 1
𝑛00

 = 0.0528. If L is the sample log odds 

ratio, an approximate 95% confidence interval is L ± 1.96SE. To obtain a 95% 

confidence interval (CI) for the odds ratio, one has to take exponentials: exp(L-
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1.96SE), exp(L+1.96SE). In the present example, one gets exp(0.5235)  = 1.6879, 

and exp(0.7305) = 2.0761, respectively. 

 

5.2 The Logit Link Function 

We want to see whether MLwiN can reproduce these estimates. Since all subjects 

had, as mentioned above, plaque-induced gingival disease, we start with assessing 

the association between visible plaque and gingival bleeding on probing by fitting 

a respective single-level logistic regression model. We intentionally omit the 

higher level, the subject.  

The binary (0, 1) response, bleeding on probing, for the ith gingival unit is denoted 

as yi. We denote the probability that yi is 1 by πi. A general model for binary 

response data is  

f(πi) = β0 + β1x1 

where f(πi) is some transformation of πi called the link function. We want to 

consider here the logit link f(πi) = log( 𝜋𝑖
1−𝜋i

), where the quantity πi /(1- πi) is the 

odds that yi is 1. Thus, predicted probabilities 𝜋� derived from the fitted model will 

lie between 0 and 1. Note that there are other link functions possible in MLwiN, 

such as the probit and log-log link which will not be dealt with in this chapter. The 
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logit transformation is most widely used since exponential coefficients from the 

logit model can be interpreted as odds ratios. So, the model takes the form 

logit(𝜋𝑖) = log � 𝜋𝑖
1−𝜋i

� =  𝛽0 +  𝛽1𝑥𝑖                (5.1) 

or, 

𝜋𝑖
1−𝜋i

= 𝑒𝛽0 × 𝑒𝛽1𝑥1     (5.2) 

If we increase x by 1 unit, we obtain  

𝜋𝑖
1−𝜋i

= 𝑒𝛽0 × 𝑒𝛽1(𝑥1+1)=𝑒𝛽0 × 𝑒𝛽1𝑥1 × 𝑒𝛽1 

Thus, the exponential of β1 is the odds ratio in case of binary response of x (0, 1), 

comparing the odds for units with x = 1 relative to the odds for units with x = 0. In 

case of continuous x, the exponential of β1 is interpreted as multiplicative effect on 

the odds for a 1-unit increase in x. Formula 5.2 can be rearranged to obtain an 

expression of πi: 

𝜋𝑖 = exp(𝛽0+𝛽1)
1+exp(𝛽0+𝛽1)

= 1
1+exp(−(𝛽0+𝛽1))

       (5.3) 
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5.3 A Single-level Logistic Regression Model 

We shall now model this relationship by fitting a single-level model of the binary 

response variable BOP in MLwiN. From the Model menu, we select Equations 

and click on y. For y, we select from the drop-down menu of the Y variable 

window BOP, for N-levels we enter 1-i, and for Level 1(i) we select SITE and 

click on done.  Now we click on N in the Equation window and tag, in the 

Response type window, Binomial. We note that in the Select link function the 

default box logit is already checked. We click Done. We click on x0 and select 

cons from the drop-down list of variables (MLwiN has created the cons variable 

already), and click Done. We click on Add term. From the variable drop-down list 

we select VPI, click Done and click on Estimate in the Equation window.  
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The first line states that the response variable follows a binomial distribution with 

parameters ni and πi. The parameter ni is known as the denominator. In the case of 

binary data, ni is equal to 1 for all units. We will now create ni and call the new 

variable denom. From the Data Manipulation menu we select Generate vector. 

In the Generate vector window we select c15. Next to Number of copies we enter 

9600, and 1 next to Value. Then, we Generate and rename c15 to denom by 

clicking on c15 and on the Column Name button. In the Equations window we 

click on ni and select denom. (Note that if our data had been binomial, i.e. in the 

form of proportions, then ni would be equal to the number of units on which the 

proportion is based; here, for instance, the number of sites where bleeding on 

probing had been assessed.) 

The second line in the Equations window is the equation for the logit model which 

has the same form as (5.1) as can be shown by clicking on the Name button in the 

Equations window. We want to specify details about the estimation procedure to 

be used. We click on the Nonlinear button at the bottom of the Equations window 

and on Use Defaults. (We will discuss estimation choices when we come to fit 

multilevel models.)  
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Now we can run the model by clicking on the Start button in main menu. The 

model converges instantly and estimates can be seen after clicking on the 

Estimates button. 

The last line in the Equations window states that the variance of the binomial 

response is πi (1- πi)/denomi, which, in the case of binary data, simplifies to πi (1-

 πi).  

 

We want to Save the worksheet in the File menu as bop02.wsz. 

 

5.4 Calculating Some Estimates Derived from the Model 

Based on the fourfold table on frequencies of bleeding on probing by visible 

plaque (see 5.1) we had calculated an odds ratio of 1.872 (1.6879; 2.0761). The 

model above indicates an estimated coefficient for visible plaque of 0.627 with a 
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standard error of 0.053. We click on Model in the main menu and then on 

Intervals and tests. After having checked fixed at the bottom of the respective 

window we type 1 next to fixed : VPI and get a 95% CI for the coefficient 

estimate of ±0.104.  

 

We may click on Calculate in the Data manipulation menu, select EXPOnential 

from the expressions at the bottom on the right side and click on the button to 

move it to the window at the top of the right side. We then type (0.627) and click 

on Calculate.  
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We get an odds ratio of 1.8720, exactly the same as the crude odds ratio derived 

from the four-fold table of frequencies. We then add and subtract 0.104 from 0.627 

and get a very similar 95% CI of 1.6871 − 2.0772. 

We can use the estimated coefficients to calculate predicted probabilities of 

bleeding on probing at a site with and without supragingival plaque by entering 

respective coefficient estimates into formula (5.3). Easier is to use again the 

Calculate window and take the ALOGit of -1.621 in case of no plaque, and of (-

1.621 + 0.627) in case of plaque. The model estimates probabilities of 0.16507 and 

0.27012, respectively. In order to get a 95% confidence interval for the latter, we 

type 1 next to fixed : cons and 1 next to fixed : VPI in the Interval and tests 

window, and click on Calc.  
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The logit(πi) estimate at sites with visible plaque (VPI = 1) has a 95% confidence 

interval of (-1.064; -0.924). ALOGit of these estimates yields a 95% CI of 

bleeding on probing in the presence of visible plaque of (0.25655; 0.28414). 

Likewise, the 95% CI for the probability of a site without visible plaque but 

bleeding on probing is (0.13147; 0.14957). 

The joint chi square test for 1 degree of freedom is very large, about 800. Whether 

that is significant can be determined when clicking on Tail Areas in Basic 

Statistics. We select Operation Chi Squared and enter the Value of 799.921 and 

1 for Degrees of freedom, then click on Calculate.  
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This yields a very low p-value, indicating that the Null hypothesis of no difference 

in the probability of bleeding on probing, regardless of whether visible plaque was 

present or not, has to be rejected.  

 

5.5 A Two-level Random Intercept Model 

We want to extend our model in (5.1) to allow for subject effects on the probability 

of bleeding on probing. Therefore, we begin with a random intercept (or variance 

components) model that allows the overall probability of bleeding on probing to 

vary across subjects.  Our binary response is yij which equals 1 if bleeding on 

probing occurs at site i in subject j and 0 if bleeding did not occur. A j subscript is 

likewise added to the proportion so that πij = Pr(yij = 1). The model can then be 

written as,   
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logit�𝜋𝑖𝑖� =  𝛽0𝑗 + 𝛽1𝑥𝑖𝑖 

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗     (5.4) 

As in a random intercept model for continuous responses, the intercept consists of 

two terms, a fixed component β0 and a subject-specific component, the random 

effect u0j. As before, we assume that the u0j follow a Normal distribution with 

mean zero and variance 𝜎𝑢02 . 

We first need to declare that the data have a two-level hierarchical structure with 

subject at the higher level and then allow the intercept β0 to vary randomly across 

subjects. We click on BOPi in the Equations window and select 2-ij for N levels 

in the Y variable window. For level 2(j) we select ID and for level 1(i) SITE, and 

click on done. We then click on the estimated coefficient for cons in the X 

variable window, check the box for j(ID) and click on Done. 

We click on Estimates and get the window below. The model follows equation 

(5.4). In particular, an additional line states that the random effects u0j follow a 

Normal distribution with mean zero and covariance matrix Ωu, which, for a random 

intercept model, consists of a single term 𝜎𝑢02 .  
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Before running the model we have to specify estimation procedures, see Rasbash et 

al. (2015), p. 125 and, in particular Goldstein (2003). MLwiN has implemented 

quasi-likelihood methods using a linearization method based on a Taylor series 

expansion which transforms a discrete response model to a continuous response 

model. After applying the linearization, the model is then estimated using iterative 

generalized least squares (IGLS) or reweighted IGLS (RIGLS), see Goldstein 

(2003) for further details. The types of approximation available in MLwiN are 

marginal quasi-likelihood (MQL) and penalized quasi-likelihood (PQL). Both of 

these methods can include either 1st order terms or up to 2nd order terms of the 

Taylor series expansion. The 1st order MQL procedure offers the crudest 

approximation and may lead to estimates that are biased downwards, particularly if 

sample sizes within higher level units are small or the response proportion is 

extreme. An improved approximation procedure is 2nd order PQL. Note that this 
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method is less stable and may encounter convergence problems. Thus, it is 

advisable to start the analysis beginning with the 1st order MQL procedure to 

obtain starting values for the 2nd order PQL procedure. Intermediate choices, for 

instance, 1st order PQL and 2nd order MQL are also often useful.  

We can check that the default estimation procedure is selected. By clicking on 

Estimation in the main menu and IGLS we see that this method is already 

selected. In the Equation window, we click on Nonlinear at the bottom and see 

that the Distribution assumption (binomial), Linearisation (1st order) and 

Estimation type (MQL) are tagged. We click on Done and run the model by 

clicking on Start. We can have a look at estimates by clicking twice on Estimates. 

We click on Nonlinear again and specify 2nd order Linearisation and PQL 

Estimation type, and click on Done and More. 
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The intercept for subject j is -1.764 + u0j where the variance of u0j is estimated as 

0.478 (SE = 0.103). Whether the latter estimate is significant may be assessed by a 

Wald test. But note that this is an approximation since variance parameters are not 

Normally distributed. The preferred approach is to construct interval estimates for 

variance parameters using bootstrap or MCMC methods, see Chapter 3 in 

Goldstein (2003) and Chapter 4 in Browne (2003). To carry out just a Wald test in 

MLwiN we click on Intervals and tests in the Model menu, check random at the 

bottom of the Intervals and tests window, type 1 next to ID : cons/cons (this 

refers to the parameter 𝜎𝑢02 ) and click on Calc. 
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The joint chi square test yields a test statistic of 21.331 which we may compare to 

a chi-squared distribution on 1 degree of freedom. We type the respective values in 

the Tails area window (in Basic statistics in the main menu) and click on Calc. 

The p-value is very low, so we conclude that differences between subjects are 

highly significant.  

 

5.5.1 Addition of further covariates 

In plaque-induced gingival disease, the development of gingival pockets which 

may bleed on probing is rather typical. Thus, increased periodontal probing depth 

(PPD) might be related to bleeding on probing independent of presence of visible 

plaque. Likewise, presence of calculus might lead to increased bleeding tendency 

of the gingiva. We may first Tabulate (in Basic Statistics) PPD by clinical 

attachment loss (CAL) and notice that both are ordered categorical variables 

comprising only non-negative integers, despite the fact that they are interpreted as 

continuous measurements. Most attachment loss was related to shallow PPD 

(indicating gingival recession). Most sites with increased PPD >3 mm had not 

undergone attachment loss (indicating what is sometimes called pseudopockets). 

We may want to enter PPD in the model centered on the mean value (which is 2.30 

mm as can be calculated in the Basic Statistics menu).  
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We click on Add term in the equation window and select variable PPD in the 

drop-down list. As there are no zero or negative measurements for PPD, we want 

to enter the variable centered around 2 mm. In the Specify term window, we check 

around value and type 2 next to it. We click on Done. We then add CLS from the 

drop-down menu and click on Done and on More in the main menu. As discussed 

before, after having obtained starting values we now want to select the 2nd order 

penalized quasi-likelihood procedure. We click on Nonlinear at the bottom of the 

Equation window, and check 2nd order for Linearisation and PQL for 

Estimation type.  
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As expected, PPD-2 is as strongly associated with BOP as is VPI. With each mm 

increase the odds of bleeding increases by a factor of 1.7524 (95% CI 1.6112; 

1.9060). A Wald test yields a large joint chi squared test statistic of 172.888 for 1 

df. Also calculus was associated with BOP. If present, the odds of gingival 

bleeding on probing is increased by a factor of 1.3298 (0.95211; 1.8571). The joint 

chi squared test statistic of 2.802 for 1 df relates to a p-value of 0.094147. We want 

to save worksheet and model as bop03.wsz. 

 

5.5.2 Variance partition coefficient 

In Chapter 2 we had partitioned the total variance for a two-level random intercept 

model and expressed the proportion of total residual variance which is attributable 
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to level 2, the so-called variance partition coefficient (VPC), 𝜎𝑢0
2

(𝜎𝑢02 + 𝜎𝑒2)� . For a 

random intercept model fitted to continuous data, the VPC is equal to the intra-

class correlation, which is the correlation between two level 1 units in the same 

level 2 unit. For random coefficient models, VPC and intraclass correlation are not 

equivalent, see Goldstein et al. (2002). In case of binary and other discrete 

response models, there is also no single VPC measure since the level 1 variance is 

a function of the mean which depends on the values of the explanatory variables in 

the model. Nevertheless, Snijder & Bosker (1999) give an approximate VPC as 

𝜎𝑢02

(𝜎𝑢02 + 𝜋2
3� )� . For the above model we can calculate an approximate VPC of 

0.123. 

Goldstein et al. (2002) propose a simulation method using the macro vpc.txt in 

MLwiN. It consists of the following steps: 

1. From the fitted model simulate M (for instance 5000) values for the level 2 

residual from the distribution N(0, 𝜎𝑢02  ), using the sample estimate of the 

variance, 𝑢0𝑗
(𝑚) (m = 1, 2, …, M) 
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2. For a given value of xij , say x* compute the m corresponding values of π𝑗
∗(𝑚) 

π𝑗
∗(𝑚) =

exp (𝛽�0+𝛽�1𝑥∗+𝑢0𝑗
(𝑚))

1+exp (𝛽�0+𝛽�1𝑥∗+𝑢0𝑗
(𝑚))

. Also compute the level 1 variance  𝑣1𝑗
∗(𝑚) =

𝜋𝑗
∗(𝑚)(1 − 𝜋𝑗

∗(𝑚)) 

3. The level 1 variance is then calculated as the mean of the 𝑣1𝑗
∗(𝑚) (m = 1, 2, … 

M), and the level 2 variance is the variance of the π𝑗
∗(𝑚). 

Before running the macro, we need to do the following: 

1. set values for explanatory variables and store these in c151, and 

2. set values for the explanatory variables which have random coefficients at 

level 2 and store these in c152. (This will be a subset of c151.)  

In the above model, there are four explanatory variables (including cons). We will 

begin computing the VPC for a site with neither visible plaque nor calculus, and a 

periodontal probing depth of 1 mm. Remember that the variable PPD is centered 

around 2 mm. We therefore want to enter the values (1, 0, -1, 0) in c151. Since the 

model is a random intercept model, only cons has a random coefficient. We thus 

want to input the value 1 in c152. To create these two columns, we select View or 

edit data from the Data Manipulation menu, click on view, select c151 and c152, 

and click OK. We then input 1, 0, -1, and 0, respectively into the first five rows of 

c151, and 1 in the first row of c152. 
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We can open the macro which contains a sequence of MLwiN commands by 

selecting Open Macro from File. We double click on vpc.txt. In the window 

which shows, and click on the Execute button. 
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The result of running the macro, namely the VPC, will be stored in a worksheet 

box called B8. To print the contents of the box, we select from the Data 

Manipulation menu Command interface and type in the space at the bottom of 

the window print b8. We then press Enter. We can get the value by clicking on 

Output. For this particular site, the VPC is about 0.048. Thus, among sites with no 

plaque or calculus and a probing depth of 1 mm, 4.8% of the residual variation is 

attributable to differences between subjects. At 3 mm deep sites (we need to enter 

1 in the 3rd line of column c151) with plaque and calculus, 9.6% of the unexplained 

variation can be attributed to subject differences.  

 

The VPC for various clinical conditions is tabulated in Table 5.1. 

 



112 
 

Table 5.1 Variance partition coefficients for different combinations of covariates 
based on the simulation method 
 
PPD/mm VPI=0/CLS=0 VPI=0/CLS=1 VPI=1/CLS=0 VPI=1/CLS=1 
1 0.049 0.057 0.064 0.072 
2 0.065 0.074 0.080 0.087 
3 0.081 0.088 0.092 0.096 
 

5.6 Two-level Random Coefficient Models 

So far, we have allowed bleeding on probing to vary across subjects, but we have   

assumed that the effects of explanatory variables (VPI, PPD-2, and CLS) are the 

same for each subject. We will now modify the assumption by allowing the 

bleeding differences between sites with and without plaque and sites with various 

periodontal probing depths to vary across subjects by introducing random 

coefficients. (Tabulating CLS reveals that the vast majority of sites, 8534 out of 

8766 sites assessed in the 50 subjects, were not covered by calculus. Moreover, 

calculus was not observed in 19 subjects at all. Due to anticipated conversion 

problems, at the moment we do not want to assume the coefficient of CLS vary 

across subjects.)  We click, in turn, on the respective coefficient in the equation, 

check j(ID) and click on Done. It is recommended to start the models with the 

default estimation procedure 1st order linearization and MQL estimation (checked 

in Nonlinear at the bottom of the Equation window), then change to 2nd order 

PQL and click More and, after conversion of the model, on Estimates.  
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Note that a j subscript has been added to the coefficients of VPI and PPD-2 

indicating that the coefficients depend on the subject. The average effects of VPI 

and PPD-2 are β1 and β2, respectively, but the effects for subject j are β1j = β1 + u1j 

and β2j = β2 + u2j, respectively, where u1j and u2 j are Normally distributed random 

effects with mean zero and variances 𝜎𝑢12 and 𝜎𝑢22 , respectively. Allowing the 

coefficients to vary across subjects has also introduced parameters σu01, σu02, and 

σu12, which are the covariances between u0j and u1j, u0j and u2j; and u1j and u2j, 

respectively. 

As for continuous response random coefficient models, the level 2 variance is a 

function of the explanatory variables that have random coefficients. For the model 
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specified above, the residual variance between subjects is a function of VPI and 

PPD-2: 

𝑣𝑣𝑣�𝑢0𝑗 + 𝑢1𝑗VPI𝑖𝑖 + 𝑢2𝑗PPD − 2𝑖𝑖� = 𝑣𝑣𝑣�𝑢0𝑗� +  2𝑐𝑐𝑐�𝑢𝑢𝑢 ,𝑢1𝑗�VPI +

𝑣𝑣𝑣�𝑢1𝑗�VPI2 +  2𝑐𝑐𝑐�𝑢0𝑗 ,𝑢2𝑗�PPD − 2 + 2𝑐𝑐𝑐�𝑢1𝑗 ,𝑢2𝑗�VPI ∗ PPD − 2 +

𝑣𝑣𝑣(𝑢2𝑗)PPD − 22     (5.5) 

(Note that because VPI is a (0, 1) variable, VPI2 = VPI). 

In order to fit the random coefficient model, we click on More and on Estimate. 

 

We can test the significance of the added parameters 𝜎𝑢102 ,  𝜎𝑢202 , σu01, σu02, and 

σu12, using Wald tests. From the Model menu, we select Intervals and tests, 
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choose random in the new window, type 5 next to # of functions, and type 1 in 

each of the boxes ID : VPI/cons, ID : VPI/VPI, ID: PPD/cons, ID : VPI/PPD, 

and ID : PPD/PPD. When clicking on Calc, we note, for instance, that the 

separate chi squared test statistics for 1 df were 4.415 for VPI and 3.806 for PPD 

yielding p-values of 0.036 and 0.051, respectively. The joint chi square test 

statistic for 5 df is 8.807 which yields a p-value of 0.117. 

 

 

So, we may conclude that, at least at the 10% level, effects of VPI and PPD do in 

fact vary across subjects. While on average, the log odds is 0.529 times higher at 
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sites with visible plaque and the odds ratio is exp(0.529) = 1.6972, depending on 

the value of u1j, the odds ratio may be larger or smaller in different subjects. For 

each 1-mm increase in periodontal probing depth the odds of bleeding on probing 

will be increased by exp(0.559) = 1.7489, on average, but depending on u2j, this 

varies across subjects. 

By substituting estimates of 𝜎𝑢102 ,  𝜎𝑢202 , σu01, σu02, and σu12 into (5.5), we may 

obtain estimates of residual subject-level variation. In the Model menu, we choose 

Variance function and select for level 2: ID. We can edit the table in the lower 

left corner for different clinical situations and get estimates of residual variance at 

the subject level. We want to Save the worksheet in the File menu as bop04.wsz. 

 

Since Silness and Löe’s plaque index are scores on an ordinal scale we want to add 

PLI as categorical variable. In the Names window, we therefore click on PLI and 

on Toggle Categorical. We delete the VPI term from the model by clicking on it 
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and on Delete Term, then clicking on Done, and add PLI in the equation. Note 

that in the Specify term window, the default reference category (ref cat), PLI_0 

appears. (We may change the reference category if we want.) When clicking on 

done, we see that now 3 terms of PLI appear in the equation, PLI_1, PLI_2, and 

PLI_3, meaning that the 4 PLI scores are defined by 3 dummy variables. We allow 

coefficients of PLI scores vary across subjects by checking the respective boxes for 

j(ID). We make sure that in Nonlinear the default settings are selected. We then 

click on Start and, after the model has converged, change to 2nd order PQL.   

We want to Save the worksheet in the File menu as bop05.wsz. 

 

While on average, the log odds of bleeding on probing is 0.571 times higher at 

sites with a plaque index score of 1, 0.776 time higher at sites with a plaque index 
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score of 2, and 1.520 times higher at sites with a score of 3 as compared to sites 

with no plaque (corresponding to odds ratios of exp(0.571) = 1.7700, exp( 0.776) = 

2.1728, and  exp(1.520) = 4.5722, respectively), depending on the values of u1j, u2j, 

and u3j, odds ratios may be larger or smaller in different subjects.  

We can test the significance of the added parameters using a Wald test. As regards 

the addition of PLI scores in the model, the joint chi square test statistic for 12 df is 

18.275 which yields a p-value of 0.10759. 

 

5.7 Modeling Binomial Data 

So far, we have considered logistic models for binary response data. The same 

models can be used for binomial data, i.e. where the response is a proportion. Only 

for illustration, we want to model the subject-level proportion of sites bleeding on 

probing as a function of the subject’s mean periodontal probing depth, the 

proportion of sites covered by visible plaque (or the mean plaque index), and the 

proportion of sites with calculus. As a caveat, note that any site-specific 

information and, in particular, the association between site-specific observations is 

lost in this case. As has been detailed in the Introduction chapter, we have to keep 

in mind that any inferences from this model will be prone to the ecological fallacy 

of associations of aggregate data which may be spurious. If site-level data are 
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available, they should therefore be analyzed as such. In many cases, however, one 

may have only access to aggregate data. 

 

5.8.1 Modeling subject-level variation with subject-level proportions  

Our response variable yj will be the sample proportion of sites bleeding on 

periodontal probing in subject j. After aggregating the data to the subject level, the 

only other change to the previous model is that the denominator nj will no longer 

equal 1 as for binary data but will be equal to the number of sites assessed in 

subject j. Although our response variable is now at the subject level, we can still fit 

a two-level random intercept model of the form: 

logit(πij) = β0j + β1propVPIj + β2avePPDj + β3propCLSj 

β0j = β0 + u0j. 

where πij is the probability of a site i bleeding on probing for subject j as before. 

avePPDj denotes the average PPD in subject j, and propVPIj and propCLSj the 

proportions of sites with visible plaque and calculus, respectively.  

When we specify the model, we will use the aggregate subject ID as the identifier 

for both level 1 and level 2. This implies a model with 50 level 2 units (subjects), 

each with one level 1 observation. (Note the tremendous loss of information here.) 

Since each level 1 unit has an associated denominator nj, which is the number of 
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gingival units assessed in subject j, and since the level 1 variance depends on the 

explanatory variables, the model is not confounded. 

 

5.7.2 Creating a subject-level data set 

We open bop02.wsz and create a subject-level data set. We start with creating the 

response variable yj and the denominator nj. 

We select from the Data Manipulation menu Multilevel data manipulations. In 

the respective window, under Operation, we select Average. For On blocks 

defined by, we select ID. For Input columns, we select PPD, BOP, PLI, CLS 

and VIP for Output columns c16-c20. We click on Add to action list and 

Execute. We then change Operation to Count and select c24 for Output column. 

We Add to action list and Execute. 
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Columns c16-c20 and c21 now contain the response and explanatory variables, and 

denominator, respectively. However, they still contain a record for each site where 

the values for sites in the same subject are replicated. To see this, we select View 

or edit data from Data Manipulation. We have therefore to convert c16-c21 so 

that they have only one record per subject.  

From the Data Manipulation menu, we select unreplicate to open the Take data 

window. For Take first entry in blocks defined by, we select ID from the drop-

down list. For Input columns, we select variables ID, and c16-c21 (using ctr-

click). For Output columns, we select c22-c28. We Add to action list and 

Execute.  
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We want to rename c22-c28 (in order): ID2, avePPD, propBOP, avePLI, 

propCLS and propVPI, and denom2. The final step in setting up the subject-level 

data set is to create a cons variable by clicking on Generate vector (in the Data 

Manipulation menu). We check Constant vector, select c29 from the Output 

column drop-down list and type 50 next to Number of copies, and 1 next to 

Value. We then Generate and finally change the Name of c29 into cons2. 

 

5.8.3 Fitting the model 

We can now set up the model. In the Model menu, we select Equations and click 

on Clear. We then click on y. In the Y variable window, we select propBOP from 

the drop-down list. For N levels, we select 2-ij and enter ID1 next to both level 
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2(j) and level 1(i). We click on done. By clicking on N, we now Select 

distribution Binomial and Select the link function, logit, then click on Done. We 

click on nij and, in the specify denominator window, we select denom2. We click 

on x0 and select cons from the X variable drop-down list. We check both Fixed 

Parameter and j(ID1). We click on Done. We add avePPD, avePLI, and 

propCLS; Use defaults in the Nonlinear Estimation window and click on Start 

in the main menu.   

Now we change to 2nd order PQL using the Nonlinear button and click on More. 

 

The model indicates positive effects of mean probing depth and plaque index on 

the proportion of gingival units bleeding on periodontal probing. A Wald test 

yields a joint chi squared of 9.207 for 2 degrees of freedom which corresponds to a 

p-value of about 0.01. (Note that the standard error of calculus is five times as 
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large as its coefficient estimate. We may want to remove CLS from the equation). 

We can conclude that, at the 1% level, both mean periodontal probing depth and 

plaque index is significantly related to the proportion of gingival units bleeding on 

probing. We may want to save the worksheet as bop_prop.wsz. 
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6 Repeated Measures Models for Binary Outcomes 

In Chapter 3, we had described simple, and quite complex, repeated measures time 

series models in which continuous outcomes, for instance, gingival thickness or 

gingival recession, were modeled over time after the implantation of a bio-

resorbable membrane, when it had to be assumed that the responses were nonlinear 

and non-monotonic.  

In this chapter we want to model the binary outcome, bleeding on gingival probing, 

in subjects with mild plaque-induced gingival disease over time. While participants 

of the 1999 Workshop on Periodontal Diseases and Conditions had realized that 

most gingival inflammation is indeed dental plaque-induced, there seem to be 

numerous intrinsic and extrinsic factors which may modify the response. For 

instance, a common toothpaste compound, Triclosan, seems to dampen gingival 

inflammation in the presence of dental plaque (Müller et al. 2006). One may also 

ask whether the so-called interleukin-1 genotype, a combination of two single 

polymorphisms in the IL-1 gene, i.e. a haplotype, which had been associated with 

increased susceptibility for destructive periodontal disease (Kornman et al. 1997), 

has a clinically discernable influence on the inflammatory response on dental 

plaque.  
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Consider, for instance, a clinical experiment in a steady-state plaque environment 

where participants were asked not to alter their oral hygiene habits. So, after a 4-

wk preparatory phase, 17 control subjects and 17 test subjects with mild gingival 

disease were properly randomized and given fluoride containing toothpastes 

without and with 0.3% Triclosan, respectively. They were then examined every 

other week for six weeks. Post hoc genetic testing revealed that the above 

mentioned IL-1 genotype was more or less evenly distributed among control and 

test subjects. The presence (six sites per tooth) of dental plaque, as described by 

the Silness & Löe plaque index (PI) on a four scores scale (Silness and Löe 1964), 

and bleeding on probing (BOP) were assessed. The cumulative topographical 

distribution of both PI and BOP during the 6-wk experiment is displayed in Fig. 

6.1 (mean PI and BOP at a given point of time with 4-wk as baseline after the 

preparatory period is plotted on top of each other).  

One might argue that there were not really relevant differences except for BOP in 

Test subjects who were IL-1 genotype positive. While plaque amount and 

distribution were similar to other groups, BOP seems to be attenuated. One may 

immediately ask the question, Can that be modeled with multilevel modeling?  
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Fig. 6.1 Topographical distribution (see, for orientation, tooth numbers 1, 8, 
16 in the maxilla, and 17, 24, and 32 in the mandible; three sites were assessed on 
the buccal aspect, and three sites on the lingual aspect of each tooth) of the Silness 
& Löe plaque index (PI) and bleeding on probing in subjects receiving fluoride 
containing toothpaste without (Control) and with 0.3% triclosan (Test) as regards 
IL-1 genotype (negative or positive). Mean scores (0-3) for PI and (0, 1) for BOP 
at week 4, 6, 8, and 10 were plotted on top of each other. 
 

We want to postpone this analysis for a moment and start with a simpler case. Fifty 

subjects had been genotyped and again examined every other week. They were 
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allowed to choose their preferred toothpaste and continue with oral hygiene habits 

but were asked to avoid any triclosan-containing paste.  

 

6.1 Description of the Example Data Set 

The data for our example are stored in an EXCEL file (IL1_bop.xlsx). The binary 

response variable here is again presence or absence of bleeding on probing (BOP) 

at gingival units in the above cohort of 50 dental students at Kuwait University, 16 

male and 34 female. They were between 19 and 28 years of age.  

Variable Description 
NO Subject’s identifier (1-50) 
GENDER (0, 1) 
ILGT Interleukin 1 genotype (0, 1) 
AGE In years 
TOOTH_NO FDI notation of teeth (11-48)  
TYPE Tooth type (1-16) 
SITE Tooth site (1-6) 
PPD Periodontal probing depth (mm)  
CAL Clinical attachment level (mm) 
BOP Bleeding on probing (0, 1) 
PLI  Silness & Löe’s plaque index (0-3) 
CLS Presence of calculus (0, 1) 
 

Clinical variables PPD, CAL, BOP, PLI and CLS have each been assessed three 

times every other week.  
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After we have opened a new worksheet in MLwiN by clicking on File in the main 

menu and New worksheet, we can import the EXCEL data by copy them to the 

clipboard and paste them into MLwiN. For that we click on Edit in the main menu 

and Paste. We check the box Use first row as names in the new window and click 

Paste. We want to Save the worksheet in the File menu as IL1_01.wsz. 

 

6.2 Separate Two-level Random Intercept Logistic Models  

Our main interest lies in the longitudinal association between site-specific BOP 

and site-specific amount of supragingival plaque, and how this is influenced by 

subject-related IL-1 genotype. We can tabulate baseline BOP by PLI scores in IL-1 

genotype negatives by clicking on Tabulate in Basic Statistics. We type next to 

Columns PLI1, check the Rows box and type BOP1. We then check the Where 

values in box, type ILGT and are between 1 and 1. When we click on Tabulate, 

we get the table below. 
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A respective table for IL-1 genotype negatives can easily be generated as well. 
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Since PLI is categorical, we mark PLI1, PLI2, and PLI3 successively and click 

each time on Toggle Categorical. 

We can first assess the association in three separate two-level random intercept 

models where we allow for subject effects on the probability of the binary response 

bleeding on probing. From the Model menu, we select Equations and click on y. 

For y, we select from the drop-down menu of the Y variable window BOP1, for 

N-levels we enter 2-ij. For Level 2(j) we select NO, for Level 1(i) we select SITE 

and click on done.  We now click on N in the Equation window and tag, in the 

Response type window, Binomial. In the Select link function the default box 

logit is already checked. We click on Done. We click on x0 and select cons from 

the drop-down list of variables (MLwiN has created the cons variable already), 

check the box j(NO) and click on Done. We click on Add term. From the variable 

drop-down list we select PLI1 (with reference category PLI1_0) and click on 

Done.  We want to add IL-1 genotype by clicking on Add Term and choosing 

variable ILGT. We click on Estimates in the Equation window.  
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As before (Chapter 5), the first line states that the response variable follows a 

binomial distribution with parameters ni and πi. The parameter ni, the denominator, 

is, in the case of binary data equal to 1 for all units. We create ni and call the new 

variable denom. From the Data Manipulation menu we select Generate vector. 

In the Generate vector window we select c28. Next to Number of copies we enter 

9600, and 1 next to Value. Then, we Generate and rename c28 to denom by 

clicking on c28 and on the Column Name button. In the Equations window we 

click on ni and select denom. 

The second line in the Equations window is the equation for the logit model which 

has the same form as (5.4) as can be shown by clicking on the Name button in the 
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Equations window. The three scores (1-3) of the PLI1 are entered into the model 

with PLI1 score of 0 as reference. We specify details about the estimation 

procedure to be used by clicking on the Nonlinear button at the bottom of the 

Equations window and on Use Defaults. Now we can run the model by clicking 

on the Start button in main menu. The model converges and estimates can be seen 

after clicking on the Estimates button again. 

 

The last line in the Equations window states that the variance of the binomial 

response is πij (1- πij)/denomij, which, in the case of binary data, simplifies to πij (1-

 πij).  
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The intercept for subject j is -1.785 + u0j where the variance of u0j is estimated as 

0.349 (SE = 0.077). By calculating ALOGit of the former, one gets 0.14369 for 

the intercept. Whether the latter (variance of u0j) is significant may approximately 

be assessed by a Wald test (see Chapter 5). To carry out a Wald test in MLwiN we 

click on Intervals and tests in the Model menu, check random at the bottom of 

the Intervals and tests window, type 1 next to ID : cons/cons (this refers to the 

parameter 𝜎𝑢02 ) and click on Calc. The joint chi square test yields a test statistic of 

20.573 which we may compare to a chi-squared distribution on 1 degree of 

freedom. We type the respective values in the Tails area window (in Basic 

statistics in the main menu) and click on Calc. The p-value is very low, 5.7400e-6. 

So, we can conclude that differences between subjects are highly significant. 

As expected, PLI1 at all scores significantly increased the odds for BOP1. The 

above model indicates estimated coefficients for PLI1scores 1-3 of 0.598 (standard 

error 0.081), 0.871 (0.073), and 1.466 (0.138), respectively. In order to calculate 

odds ratios, we click on Model in the main menu and then on Intervals and tests. 

After having checked fixed at the bottom of the respective window we type 1 next 

to fixed : PLI1_1 and get a 95% CI for the coefficient estimate of ±0.160. We then 

click on Calculate in the Data manipulation menu, select EXPOnential from the 

expressions at the bottom on the right side and click on the button to move it to the 

window at the top of the right side. We type (0.598) and click on Calculate. We 
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get an odds ratio of 1.8185. We then add and subtract 0.160 and get a 95% CI of 

1.5496 − 2.1340. We can repeat the calculation for PLI1_2, PLI1_3, and ILGT. It 

may be useful to Save the worksheet in the File menu as IL1_02.wsz. We may 

then model BOP2 and BOP3. Respective results are displayed in Table 6.1.  

Table 6.1 Odds ratios (95% confidence interval) of three separate two-level 
random intercept logistic models  
 
 Model 1 (BOP1) Model 2 (BOP2) Model 3 (BOP3) 
PLI_1 1.8185  

(1.5496-2.1340) 
1.7212  
(1.4434-2.0524) 

1.7950  
(1.4978-2.1511) 

PLI_2 2.3893  
(2.0689-2.7594) 

2.6912  
(2.3117-3.1330) 

2.4157  
(2.0730-2.8151) 

PLI_3 4.3319  
(3.3036-5.6803) 

4.4106  
(3.2904-5.9121) 

3.5716  
(2.5472-5.0078 

ILGT 0.77260  
(0.54717-1.0909) 

0.75730  
(0.53687-1.0682) 

0.65312  
(0.45566-0.93613) 

 

As expected, BOP was consistently associated with plaque index. The association 

became stronger with higher scores. The IL-1 genotype was, in general, negatively 

associated with BOP. However, parameter estimates do not allow us to draw any 

firm conclusions about the relative weight of amount of plaque (as described by 

PLI scores) and the IL-1 genotype on BOP at various examination occasions. In 

order to avoid the drawbacks of the separate models we can pool the data from 

each examination occasion into a single, three-level repeated measures model. 
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6.3 Repeated Measures Multilevel Repeated Measures Models  

The models described so far are separate, two-level, models ignoring repeat 

observations made at sites in subjects. An instantly conceived model which would 

better describe the structure of the data would be the standard multilevel repeated 

measures logistic model. As has been described in Chapter 3, we need to transform 

site data records into separate records (or rows) for each occasion. Thus, we want 

to split the records in the worksheet IL1_01.wsz. We click on Data manipulation 

in the main menu and select Split records. Since data were recorded three times, 

we set 3 in Number of occasions. The Number of variables to be split is set 5. In 

the Stack data grid we click on Variable 1 and select in the drop-down the three 

variables PPD1, PPD2, and PPD3 and click on Done. We repeat the two above 

steps for Variable 2 (CAL1 …, CAL3), and all the other variables to be stacked. 

We want to stack the data into free columns c23 to c28. For that purpose we click 

in the Stacked into row of the Stack data grid and select in the appearing drop-

down lists the respective columns c23 … c27. We tick the Generate indicator 

column check box and select, in the neighboring drop-down list, c28 for the five 

occasions. Seven variables have to be repeated (carried data). In the Repeat 

(carried data) frame, we select NO, GENDER, ILGT, AGE, TOOTH_NO, TYPE, 

and SITE as input columns and assign to them c29 …c35 as the respective outputs.  
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We click on the Split button to execute the changes. Before saving the worksheet, 

we want to first assign names to columns c23 … c35 and thus select No when 

being asked whether we want to save the worksheet. We still need to create a 

constant column (cons) and denominator column (denom) by generating respective 

vectors of value 1 in free columns. Since PLI is categorical, we mark it and click 

on Toggle Categorical. After having renamed respective columns, the worksheet 

should be saved under a different name, for instance IL1_03.wsz. 
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We treat examination occasion (OCC) as the repetition at level 1 (indicated by t) 

nested within sites (indicated by i), which are nested in subjects (j). Let zt be the 

vector of indicator variables for t=1, 2, 3 (or BL, 2 wk, 4 wk) respectively, 

z1ij = 1     if t = 1 

z2ij = 1     if t = 2  and 0 otherwise. 

z3ij = 1     if t = 3 

We can create dummy variables z1-z3 in the usual way by selecting recode (by 

range) in the Data Manipulation menu. We select OCC in Input columns and 

some free columns in Output columns. We type respective Values in range … to 

and assign respective values 1 or 0 to new values, Add to action list and Execute, 

then rename the columns. Since examination occasion is now level 1, the notation 

reflects this with t being the index for the first subscript.  
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We can write a model for the probability of a positive response bleeding on 

probing, πtij as follows, 

logit�𝜋𝑡𝑡𝑡� = �𝛽0,𝑡

3

𝑡=1

𝑧𝑡𝑡𝑡 + ��𝛽ℎ,𝑡
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ℎ=1

3
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(6.1) 

Where vtj and utij are the residual terms at the subject and site level, respectively, 

associated with the intercept for each examination occasion t. We can set up a 

three-level random intercept model (with OCC as level 1), adding (categorical) PLI 

and IL1 at each examination by typing 1 next to order, and variables PLI and z1, 

z2, and z3 as well as IL1 and z1, z2, and z3, respectively.  
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The last line in the Equations window states that the variance of the binomial 

response is πi (1- πi)/denomi, which, in case of binary data, simplifies to πi (1- πi). 

Note the extrabinomial, so-called scale factor α, which can be estimated as well. If 

α is significantly greater than 1, this would imply overdispersion of the data at 

level 1 in the model. This is often the case when the model misses an important 

explanatory variable, or unaccounted clustering at higher level is present. If α is 

significantly less than 1, this implies underdispersion, possibly due to strong 

correlation between outcomes after controlling for higher level effects (Griffiths et 

al. (2004). In either case, the assumption of conditionally independent Bernoulli 

trials is violated. α may therefore be used as valuable diagnostic in that regard 

when considering the model. So far, we have constrained the extrabinomial 

parameter. In order to unconstrain, we click on Nonlinear in the equation window 
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and check extra Binomial. We then click on Done and run the model by clicking 

on Start. The model converges after 8 iterations.  

 

Only the MQL plus first-order approximation procedure provided converged 

estimates. However, there are definitely serious problems with this model. 

Correlations between occasions at the site level are generally much greater than 1. 

We can check that by clicking on Estimate tables in the Model menu. In the 

Estimates window, we select Level 2:Site 2 and check the C box for correlations. 

Moreover, since the scale factor is well below 1, there is definitely underdispersion 

in the model. A considerable proportion of sites had the same bleeding status on all 

examination occasions which can be assessed by tabulating BOP status at all three 

occasions: 302/8766 (3%) were consistently bleeding, but 5244/8766 (60%) were 
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consistently not bleeding. So we reasonably may suppose that for a large majority 

their probabilities are in fact 0.  

 

We do not consider this model but want to save the worksheet under IL1_04.wsz. 
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6.4 Multivariate Multilevel Repeated Measures Models  

We may use the same notation as in (6.1) to set up a general multivariate logistic 

model, 

𝑦𝑡𝑡𝑡 = 𝑏𝑏𝑏(1,𝜋𝑡𝑡𝑡) 

logit�𝜋𝑡𝑡𝑡� = �𝛽0,𝑡

𝑚

𝑡=1

𝑧𝑡𝑡𝑡 + ��𝛽ℎ,𝑡

𝑛

ℎ=1

𝑚

𝑡=1

𝑧𝑡𝑡𝑡𝑥ℎ,𝑡𝑡𝑡�𝑢𝑡𝑡𝑧𝑡𝑖𝑗

3

𝑡=1

 

𝑢𝑡𝑡~𝑁(0, Ω𝑢) 

(6.2) 

where m occasions and n covariates were considered. We make the same 

assumption as for the repeated measures model. Residual terms at the subject level 

associated with the intercept for each examination are designated utk. There is no 

level 1 (occasion) variation, because at level 2 (site), binomial variates among 

occasions are allowed to covary within sites. At this level, a covariance structure is 

estimated in which diagonal terms are constrained to having binomial variance, 

and off-diagonal terms are estimated. Thus, the dependence of observations at this 

level is fully accounted for. Unconstraining level 2 variance by introducing a scale 

factor a then allows assessment of extrabinomial variation (Müller and Barrieshi-
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Nusair 2010).  This is a convenient and efficient model for formulating a 

multivariate multilevel model (Yang et al. 2000).  

 

6.4.1 A three-level repeated measures multivariate logistic variance components 

model  

In order to set up the above model, we want to start with a variance components 

model without covariates. We open the worksheet saved in IL1_02.wsz, open the 

Equations window and click on Clear. In the Responses drop-down list, we select 

BOP1, BOP2, and BOP3. As before, we click on N in the Equation window and 

tag, in the Response type window, Binomial. In the Select link function the 

default box logit is already checked. We click on Done. We click on x0 and select 

cons from the drop-down list of variables and select the box Add Separate 

coefficients. We now click on resp and select in N levels 3-ijk after which we 

specify the levels: level 3(k): NO_long; level 2(j): SITE_long (note that MLwiN 

has created these variables containing all 28800 observations automatically); level 

1 (i): resp_indicator. We then click on Done. We need to Generate vector denom 

in the Data Manipulation menu in the usual way. We click in turn on cons.BOP1, 

cons.BOP2, and cons.BOP3 in the Equations window and check for each the box 
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k(NO_long). Our simple multivariate model (without covariates) has now the 

desired form, and the respective worksheet may be saved under IL1_05.wsz. 

 

We want to run the model by clicking on Start in the main menu. It converges 

after 6 iterations. By clicking on Estimates, we get the following: 
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The predicted proportions of BOP, ALOGit (βk) at examination occasions 1-3, are 

0.213, 0.187, and 0.180, which are identical with the raw proportions. In order to 

assess extrabinomial variation, we want to unconstrain the level 2 variance and 

introduce scale factors α. We click on Nonlinear in the Equations window, check 

extra Binomial in Distributional assumptions select 2nd order Linearisation 

and Estimation type PQL, and click on Done. After clicking on More, the model 

converges after e few iterations.  
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At the site level, extrabinomial parameters are all close to 1, indicating that the 

assumption of binomial error distribution for each examination occasion is 

adequate. The three biserial covariances between examination occasions are 0.153 

(OCC1:OCC2), 0.152 (OCC1:OCC3), and 0.169 (OCC2:OCC3). As before (see 

chapter 5), correlation coefficients rm,n for occasions m and n can be calculated by 

𝑟𝑚,𝑛 = 𝜎𝑚,𝑛/(�𝜎𝑚2 × 𝜎𝑛2). By clicking on Estimate tables in the Model menu, 

selecting Level 2:SITE_long and checking C (for correlations), we see that the 

biserial covariances correspond to correlations between examinations occasions of 

0.155-0.171. They are rather small as compared with correlations at the subject 

level, which are considerably higher ranging between 0.826 and 0.854. High 

intercorrelations at the subject level were actually expected since subjects had been 

asked not to change their oral hygiene habits in order to study bleeding on probing 

in a steady-state plaque environment. On the other hand, intercorrelations at the 
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site level were rather low pointing to the interesting observation of low degree of 

predictability of bleeding on probing in the presence of supragingival plaque.   

 

6.4.2 A three-level repeated measures multivariate logistic model with covariates 

We want to add covariates (of categorical) PLI and ILGT to the model by forming 

interaction terms between the explanatory variables and the examination occasion 

indicators to fit main effects for each occasion in the fixed part according to 

equation (6.2). We click on Add term in the Equations window, select in turn 

PLI1, PLI2, PLI3 as well as ILGT and click on add Separate coefficients. (Note 

that, if we are only interested in PLI on the same occasion as BOP was assessed, 

we need to delete PLI for the other occasions). We run the model which converges 

after a few more iterations. 
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Estimates of all parameters are rather similar for each examination occasion. We 

may anyway want to carry out a joint approximate Wald test to compare, for 

instance, the estimate of PLI score 3 at occasion 1 (1.435, SE 0.135) with that at 

occasion 3 (1.145, SE 0.165). In the Model menu, we select Intervals and tests 

and check at the bottom fixed effects. We type 1 next to PLI1_3.BOP1 and -1 next 

to PLI3_3.BOP3 and click on Calc. We yield a chi square of 1.951 for 1 degree of 

freedom. In Basic statistics we may check Tail areas by typing the value and 

degrees of freedom next to the respective fields. We make sure that Chi Squared 

is checked and yield a p value of 0.16248 meaning that there is no good reason to 

assume that the estimates differ substantially. We note that extrabinomial 

parameters at the site level again are all close to 1(∼0.98) pointing to the correct 

assumption of conditionally independent Bernoulli trials. 

 

6.4.3 Some contextual effects 

In the above model we noticed that the ILGT had a consistently negative impact on 

our response variable, BOP. In order to address, for instance, the important 

question, How does the ILGT influence the bleeding response of gingiva to 

different amounts of supragingival plaque?, we need to modify our model further. 

We want to add interaction terms of ILGT and PLI for each examination occasion.  
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In the Specify term window we type 1 next to order and choose variables ILGT 

and in turn PLI1, PLI2 and PLI3. We click add Separate coefficients (and have to 

delete all interaction terms with PLI of different occasions, see above). We run the 

model which converges after a few further iterations. 

 

With this model set-up, we might calculate odds ratios, for the different 

examination occasions, for BOP at sites with varying amounts of plaque, and PLI 

score 0 in ILGT negatives as reference. We click Intervals and tests in the Model 

menu and check fixed. We want to assess, for example, first sites with a PLI score 

of 1 at examination occasion 1. For ILGT negatives, we type 1 next to 

fixed:PLI1_1.BOP1 and click on Calc. The expected estimate from the model 

equation is 0.779 with 95% confidence interval of 0.226. The odds ratio can be 

calculated in the Data Manipulation menu by taking the EXPOnential(0.779). It is 
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2.1793 with a 95% confidence interval of 1.7385 to 2.7319. That means that, at 

examination occasion 1, the odds of bleeding on probing in ILGT negatives was 

more than two times higher at sites covered by plaque with a PLI score of 1. We 

can calculate odds ratios for PLI1 scores 2 and 3 accordingly. In case of PLI1 score 

of 0 in ILGT positives, we type 1 next to fixed: ILGT.BOP1 in the Interval and 

tests window and get an estimate of -0.015 with a 95% confidence interval of 

0.431. The odds ratio (with a PLI1 score of 0 in ILGT negatives) is 0.98511 

(0.64018-1.5159). For sites with a PLI1 score of 1 in ILGT positives, we need to 

type 1 next to fixed:PLI1_1.BOP1,  fixed: ILGT.BOP1, and fixed: 

ILGT.PLI1_1.BOP1. The odds ratio is 1.3580 (0.88161-2.0917). 
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We may want to calculate respective odds ratios for examination occasion 2 and 3 

as well. They are tabulated in Table 6.2. 
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Table 6.2 Odds ratios (95% confidence intervals) of BOP with ILGT 
negative individuals at sites with a PLI score of 0 as reference at the 
three examination occasions  
 
OCC_1   
ILGT_0 PLI_0 Reference 
 PLI_1 2.18 (1.74-2.73) 
 PLI_2 2.58 (2.09-3.17) 
 PLI_3 4.54 (3.31-6.22) 
ILGT_1 PLI_0 0.99 (0.64-1.52) 
 PLI_1 1.36 (0.88-2.09) 
 PLI_2 2.01 (1.33-3.05) 
 PLI_3 4.42 (2.28-8.55) 

 
OCC_2   
ILGT_0 PLI_0 Reference 
 PLI_1 1.38 (1.08-1.76) 
 PLI_2 2.31 (1.88-2.84) 
 PLI_3 3.56 (2.58-4.92) 
ILGT_1 PLI_0 0.65 (0.43-1.00) 
 PLI_1 1.22 (0.80-1.87) 
 PLI_2 1.67 (1.11-2.51) 
 PLI_3 3.58 (1.81-7.09) 

 
OCC_3   
ILGT_0 PLI_0 Reference 
 PLI_1 1.49 (1.16-1.91) 
 PLI_2 2.03 (1.64-2.51) 
 PLI_3 2.88 (1.97-4.21) 
ILGT_1 PLI_0 0.57 (0.36-0.88) 
 PLI_1 1.06 (0.68-1.66) 
 PLI_2 1.36 (0.90-2.06) 
 PLI_3 1.96 (0.93-4.13) 
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It seems so that odds ratios were lower in ILGT positives, in particular at sites with 

low plaque levels. Thus, associations between small amounts of supragingival 

plaque and bleeding on probing may be dampened in ILGT positives. We can carry 

out joined tests (approximate Wald tests) to substantiate this hypothesis. We select 

3 in # of functions in the Interval and tests window. For PLI scores 0, we only 

need to enter 1 next to fixed:ILGT.BOP1, fixed:ILGT.BOP2, and 

fixed:ILGT.BOP3. After clicking on Calc, we see that the joint chi square test 

with 3 degrees of freedom is 11.781. The p-value, which can be obtained by 

entering respective values in the Tail Areas window of the Basic Statistics menu 

is 0.008. For the case of PLI scores of 1, we need to enter 1 in addition to 

fixed:ILGT.PLI1_1.BOP1, fixed:ILGT.PLI2_1.BOP2, and 

fixed:ILGT.PLI3_1.BOP3. The joint chi sq test(3df) is 5.912, and the respective 

p-value 0.11597.  
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Results of all joint chi square tests are displayed in Table 6.3. 

Table 6.3 Joint chi square tests for contrasts of BOP estimates in IL1 genotype 
positives and negatives 
 
 Chi squared (3df) 

 
p 

PLI_0 11.781 0.00817 
PLI_1 5.912 0.11597 
PLI_2 4.474 0.21462 
PLI_3 0.956 0.81190 
 

It can be concluded that bleeding tendency at sites without or with only small 

amounts of supragingival plaque (PLI scores 0 or 1) was significantly lower in 

individuals with positive interleukin genotype as compared to ILGT negatives. 
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Results of further multivariate multilevel logistic regression models using this data 

set can be found in Müller and Barrieshi-Nusair (2010). 

 

6.4.4A four-level repeated measures multivariate logistic model  

A question remains whether the model can be improved by introducing another 

level, the tooth. By clicking on the responses, we can define NO_long as level 4, 

and TOOTH_NO_long as level 3 (note that the program has created a respective 

column already). SITE_long is, as before, level 2 and the multivariate structure of 

responses level 1. We need to click on intercepts and check the boxes l(NO_long) 

and k(TOOTH_NO_long). We should first run the model by using defaults for 

Nonlinear Estimation. After converging, we check extra Binomial and later 2nd 

order PQL. 
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As can easily been seen, a significant part of variation of BOP scores can be found 

at the tooth level. Biserial correlations between examination occasions are 

displayed in the window below. They are moderate (0.244-0.395) when compared 

with correlations at the subject level (0.766-0.831) which, as has been noted 

before, may reflect the steady-state plaque environment. At the site level, they 

were again low (0.113-0.140). What is of concern, however, is extrabinomial 

parameters which significantly differ from 1.  
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Sparseness at the lower level has been suggested as possible reason for 

underdispersion by Wright (1997). In our case, for instance, there are lots of teeth 

with just 6 observations of gingival bleeding/no bleeding on probing. There is little 

information about distributional characteristics for the tooth and in particular little 

that can be said about tooth level variance. So, we prefer the previous, three-level 

multivariate model. 
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7 Ordered Categorical Response Models 

In several chapters so far we have addressed modeling a binary response variable, 

for instance gingival bleeding upon periodontal probing, which has only two 

expressions, yes or no (or 1, 0). Many kinds of response variables are ordered 

categorical. For instance, the Silness & Löe plaque index, which assesses the 

amount of supragingival plaque at a certain tooth surface adjacent to the gingival 

margin, comprises clinically defined situations on a scale of scores from 0 to3 

(Table 7.1).  

Table 7.1 Plaque index as originally described by Silness and Löe (1964). 
 
Score Description 
0 No plaque 
1 A film of plaque adhering to the free gingival margin and adjacent 

area of the tooth. The plaque may be seen in situ only after 
application of disclosing solution or by using the probe on the tooth 
surface 

2 Moderate accumulation of soft deposits within the gingival pocket, 
or on the tooth and gingival margin which is can be seen with the 
naked eye 

3 Abundance of soft matter within the gingival pocket and/or on the 
tooth and gingival margin 
 

 

Very often, these scores are statistically treated as if they were measurements on a 

continuous scale. Then given averages have a number of shortcomings. For 

instance, values in-between scores are clinically not defined and have to be 
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reinterpreted as frequencies of integer scores. The differences in the amount of 

plaque of scores 0 and 1 are certainly smaller than those between scores 1 and 2. 

Moreover, both inter- and intra-examiner reliability of scoring may differ across 

different scores.  

An alternative approach of dealing with this kind of data is to retain the categories 

throughout the analysis. The example analyses in the present chapter show how 

this can be accomplished. 

 

7.1 Description of the Example Data Set 

The data for our example, derived from the above cohort of 50 dental students at 

Kuwait University, are stored in an EXCEL file (IL1_clearedbop.xlsx). Missing 

observations (for instance missing teeth) had been removed. 

Variable Description 
NO Subject’s identifier (1-50) 
GENDER (0, 1) 
ILGT Interleukin 1 genotype (0, 1) 
AGE In years 
TOOTH_NO FDI notation of teeth (11-48)  
TYPE Tooth type (1-16) 
SITE Tooth site (1-6) 
PPD Periodontal probing depth (mm)  
CAL Clinical attachment level (mm) 
BOP Bleeding on probing (0, 1) 
PLI  Silness & Löe’s plaque index (0-3) 
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CLS Presence of calculus (0, 1) 
Recall that clinical variables PPD, CAL, BOP, PLI and CLS have each been 

assessed three times every other week. We copy and paste the data into a new 

worksheet in MLwiN as before and save it in the new file IL1_cleared01.wsz.  

 

7.2 An Analysis Using a Traditional Approach  

Our main interest lies in the plaque index which is so far considered as a 

continuous variable. However, as mentioned before, only integer scores 0-3 are 

properly defined. Note that the following analysis is done only to provide a 

comparison for the categorical response model that follows. Thus, we will begin by 

fitting a single-level model of plaque index that treats the response variable as if it 

was measured on a continuous scale. 

We can illustrate the distribution by creating a histogram of PLA1. From the 

Graph menu we select Customized graphs. We select PLI1 for y and histogram 

for plot type and click on Apply.  
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7.2.1 Setting up the data structure 

As it is obvious that the distribution of PLA1 is certainly not Normal, we may 

transform it to Normal scores. To each response category, this transformation 

assigns the value from the inverse of the standard (0, 1) Normal cumulative 

distribution for the estimated proportion of sites from the response variable’s 

original distribution. We can use MLwiN’s NSCO command to create new 

response variables for PLI at all three examination occasions. I the Data 

Manipulation menu we select Command interface. In the bottom box of the 

Command interface window, we type NSCO ‘PLI1’ c23 and press the return key, 

and so on. We have then to rename the columns as PLI1normal, PLI2normal and 

PLI3normal. 
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In order to transform site data record into separate records (or rows) for each 

occasion, we want to split the records as described in Chapter 3. Thus, in the main 

menu we click on Data manipulation and select Split records. Since data were 

recorded three times, we set 3 in Number of occasions. The Number of variables 

to be split is set 6. In the Stack data grid we click on Variable 1 and select in the 

drop-down the five variables PPD1, PPD2, and PPD3. Then we click Done. We 

repeat the two above steps for Variable 2 (CAL1 …CAL2), and all the other 

variables to be stacked. Eventually we want to stack the data into free columns c27 

to c32. We tick the Generate indicator column check box and select, in the 

neighboring drop-down list, c33 for the three occasions. 



164 
 

Seven variables have to be repeated (carried data). In the Repeat (carried data) 

frame, we select NO, GENDER, ILGT, AGE, TOOTH_NO, TYPE, and SITE as 

input columns and assign to them c34 …c40 as the respective outputs.  

 

We then click the Split button to execute the changes. Before saving the 

worksheet, we want to first assign names to columns c27 … c40 and thus select No 

when being asked whether we want to save the worksheet. We want to rename the 

respective columns. Before setting up simple variance components model we have 
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to create a constant column (CONS).  We access the Generate Vector window via 

the Data Manipulation menu. We select c26 as Output column, fill in 26274 in 

Number of copies and assign the Value of 1 to them. We click on Generate and 

rename the column as before, cons. Now we want to save the worksheet, for 

instance as IL1_cleared02.wsz. 

 

7.2.2 A four-level repeated measures model of plaque index considered as 

continuous response 

We will now treat PLInormal at the different occasions as a continuous response 

variable. We start by seeing how the total variance of PLInormal is partitioned 

into four components, between subjects, teeth, sites and occasions within sites. 

Thus, we fit a four-level model involving the intercept term and OCC. In the 

Equations window we define PLInormal as response variable (with a Normal 

error distribution), and set up a four-level model with NO2 as level 1, 

TOOTH_NO2 as level 2and SITE2 as level 3 and OCC as level 4 identifier. We 

define the variable cons and add OCC as explanatory variable. We click on β0 and 

check in the X variable window the boxes l(NO2) , k(TOOTH_NO2), j(SITE2), 

and i(OCC), then click on Done. We run the model by clicking on Start. 
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As expected in a steady-state plaque environment, both coefficients of transformed 

to Normal scores PLI at occasion 2 and occasion 3 are not very much different 

from 0. Variances at the subject level and tooth levels were considerable, but those 

at the site and occasion level were considerably larger (32 and 39% of total 

variance).  In the Names window, we Toggle Categorical GENDER2 (female 0, 

male 1), ILGT2, TOOTH_NO2, TYPE2, and SITE2. We first want to assess the 

effect of GENDER2, ILGT2, and AGE2 (centered on the Grand mean) on PLI 

and add respective terms into the model, which converges instantly after clicking 

on More. 
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Apparently, males had more plaque than females. To do an approximate Wald test 

to get an idea of whether this was of significance we check fixed in Intervals and 

tests and type 1 next to fixed:GENDER2_1 and click on Calc. Chi-squared on 1 

degree of freedom is 3.762 which corresponds to a p-value of 0.052430.  Centered 

(on the grand mean) age was not of importance whereas ILGT positives had 

slightly less plaque. Since all added covariates are subject-related, only the 

(unexplained) variance at the subject level has been reduced to 0.091 (SE 0.019).  

We now want to assess tooth type as covariate and add categorically toggled 

TYPE2 which encodes teeth in the maxilla (central and lateral incisors, canines, 

first and second premolars, first, second and third molars, 1-8) and the mandible 

(9-16). The reference is a central incisor in the maxilla.  
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Apparently, plaque at maxillary lateral incisor, canines and premolars did not differ 

much from that at central incisors, while molars and all teeth in the mandible 

harbored considerably more plaque. Unexplained variance at the tooth level was 

considerably decreased. The model contains 15 more variables and we might 

assess whether it fits the data better by calculating the likelihood ratio statistic 

51678.009 - 50782.097 = 895.912 which is compared to a chi-squared distribution 

on 15 degrees of freedom. We conclude that the model with the tooth type 

covariate explains variation in PLInormal scores significantly better. A further 

improvement can be achieved by adding toggled categorical SITE2 (mesiobuccal, 

midbuccal, distobuccal, distolingual, midlingual, mesiolingual, 1-6) to the model 

with SITE2_1 as reference. 
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We will now turn to a multinomial model of PLI scores which retains the response 

variable’s original grade categories.  

 

7.3 A Single-level Model with an Ordered Categorical Response Variable 

We specify that our original response has t categories, indexed by s (s = 1, …, t) 

and we want to choose the highest category t as the reference category. Suppose 

that the probability of site i having a response variable value of s is 𝜋𝑖
(𝑠). 

We want to base our model upon cumulative response probabilities rather than the 

response probabilities for each separate category. We define the cumulative 

response as, 
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𝐸 �𝑦𝑖
(𝑠)� = 𝛾𝑖

(𝑠) = � 𝜋𝑖
(ℎ),       𝑠 = 1, … , 𝑡 − 1

𝑠

ℎ=1
     (7.1) 

Here, 𝑦𝑖
(𝑠)are the observed cumulative proportions (out of a total ni observations – 

actually 3 in our example, but we first want to model just the first observation) for 

the ith site. Expressing the category probabilities in terms of the cumulative 

probabilities, we have, 

𝜋𝑖
(ℎ) = 𝛾𝑖

(ℎ) − 𝛾𝑖
(ℎ−1), 1 < ℎ < 𝑡 

𝜋𝑖
(1) = 𝛾𝑖

(1);  𝛾𝑖
(𝑡) =  1     (7.2) 

A common model choice is the proportional odds model with a logit link, namely, 

𝛾𝑖
(𝑠) = {1 + exp − [𝛼(𝑠)+ (𝑋𝑋)𝑖]}−1 

or 

logit(𝛾𝑖
(𝑠)) = 𝛼(𝑠) + (𝑋𝑋)𝑖    (7.3) 

This implies that increasing values of the linear component are associated with 

increasing probabilities as s increases. 

If we assume an underlying multinomial distribution for the category probabilities, 

the cumulative proportions have a covariance matrix given by, 

cov(𝑦𝑖
(𝑠),𝑦𝑖

(𝑟)) = 𝛾𝑖
(𝑠)(1 − 𝛾𝑖

(𝑟))/𝑛𝑖 ,   𝑠 ≤ 𝑟     (7.4) 
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We can fit models to these cumulative proportions (or counts conditional on a 

fixed total) in the same way as with a regular multinomial response vector, 

substituting this covariance matrix (see, for further discussion, Yang 2001).  

We start by clicking on Clear the Equations window and Toggle Categorical 

PPD1 to PDD3 in the Names window. In order to set up the new model for just 

PPD1, we click on y in the Equations window and select PPD1, 1-i for N levels 

and SITE for level 1(i). We click on done. We click on N in the Equations 

window and select Multinominal. Under Multinomial options, we select 

Ordered proportional odds and the default link function, logit. Next to ref 

category, we select PLI1_3 and click Done, then on Estimates in the Equations 

window. 

 

The model has now a form similar to the one presented in equations (7.1) to (7.4). 

Note, however, that y has been replaced by resp, and that subscripts i and j are 

used on this and the π and γ terms. MLwiN has created a two-level formulation of 
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the original single-level. Each site, now a level two unit, has three (number of 

categories s minus 1) response variables (level 1 units). We may check this by 

clicking on resp in the Equations window.  If we look at the Names window, 

several new variables have been created by MLwiN. Which appear in vacant 

columns, for instance resp_indicator and SITE_long. (Remember that the suffix 

_long is created by MLwiN to distinguish each new variable created automatically 

in an expanded data set.) Each of these new columns has a length of 26274 (3 x 

8758) because there are 3 responses per site. 

We have not yet selected explanatory variables to be included in the model. We 

would interpret logit(γ2j) as the logit of the expected probability that a plaque index 

(on first examination) of 2 or 3 at site  j would have been scored. In order to further 

set up the model we need to define the denominator vector. We want to address 

only the plaque index score on occasion 1, so the value of nj is always 1. We 

choose c45 for a column of 1s as the denominator by choosing Generating vector 

in Data Manipulation which we rename to denom_old.  

We can now start adding explanatory variables by clicking on the Add term button 

and selecting cons. As before, we fit a separate intercept for each of the three 

response variables by clicking on add Separate coefficients.  
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The naming of the explanatory variables indicates that we are fitting an ordered 

proportional odds model as given in equations (7.1) to (7.4). We chose Use 

Defaults in the Nonlinear menu and click Done. We now run the model by 

clicking on Start in the main menu. After a few iterations, thee model converges. 

By clicking twice on Estimates, we get the following. 
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If we take the antilogit (in Data manipulation, click Calculate and select 

ALOGit of -0.805) of the first coefficient (-0.805), we get 0.30896, the estimated 

probability that a site has a plaque index score of 0. The proportion of sites with a 

plaque index score of 0 or 1 is the antilogit of 0.171, i.e. 0.54265; and that of either 

0, 1 or 2 is antilogit of 3.262, namely 0.96310. These proportions agree with the 

proportions we can obtain directly from the data using the Tabulate window. 
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7.4 A Two-level Model 

The two-level ordered category response model is a generalization of the single-

level model, as shown in the following set of corresponding model equations. 

𝐸 �𝑦𝑖𝑖
(𝑠)� = 𝛾𝑖𝑖

(𝑠) = �𝜋𝑖𝑖
(ℎ),       𝑠 = 1, … , 𝑡 − 1

𝑠

ℎ=1

 

𝛾𝑖𝑖
(𝑠) = {1 + exp − [𝛼(𝑠)+ (𝑋𝑋)𝑖𝑖 + 𝑍𝑖𝑖𝑢𝑗]}−1 

cov(𝑦𝑖𝑖
(𝑠),𝑦𝑖𝑖

(𝑟)) = 𝛾𝑖𝑖
(𝑠)(1 − 𝛾𝑖𝑖

(𝑟))/𝑛𝑖𝑖 ,   𝑠 ≤ 𝑟   (7.5) 

or 

logit �𝛾𝑗𝑗
(𝑠)� = 𝛼(𝑠) + (𝑋𝑋)𝑖𝑖 + 𝑍𝑖𝑖𝑢𝑗 

𝜋𝑖𝑖
(ℎ) = 𝛾𝑖𝑖

(ℎ) − 𝛾𝑖𝑖
(ℎ−1), 1 < ℎ < 𝑡 
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𝜋𝑖𝑖
(1) = 𝛾𝑖𝑖

(1);  𝛾𝑖𝑖
(𝑡) = 1 

As we would expect, when fitting this model, MLwiN creates a three-level 

formulation. We add subject ID (NO) as a third (highest) level in the model we 

have just fitted by clicking on resp in the Equations window and selecting in the 

Y variable window 3-ijk beside N levels. We select NO beside level 3(k) and 

click done (as expected, MLwiN has created a new column, NO_long to serve as 

actual identifier variable used during fitting; we can also see in the Names window 

the three intercept variables derived from cons and the full denom variable). 

We now need to define the variation at the subject level. One possibility is to allow 

each plaque index category’s intercept term to vary, giving us a 3 x 3 covariance 

matrix at level 3. To do this we would simply click on each cons.(<=*) term in turn 

and in the X variable window, check the k(NO_long) box. However, if we did 

this, we would essentially be fitting a simple multinomial two-level model, which 

also has a 3 x 3 covariance matrix. Instead, we shall fit a single variance term at the 

subject level by clicking on the Add Term button on the Equations window 

toolbar, select cons in the variable box of the Specify term window, but click on 

add Common coefficient. In the appearing Specify common pattern window we 

can check boxes (<=PLI1_0), (<=PLI1_1) and (<=PLI1_2), corresponding to the 
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terms entered in the model. We fit our common level 3 variance by clicking on 

Include all and then Done. 

 

As can be seen, a term hjk has been added to the equation for each response 

category. It represents terms common to the set of equations and defined following 

the equations for the response categories. In our example, it consists of the single 

common coefficient associated with the newly created variable cons.012. If we had 

specified a pattern that included only response categories 0 and 2, the new variable 

would have been named cons.02, and its term would have appeared only in the 

respective equations. Apparently, this procedure allows complete flexibility in 

specifying patterns of shared coefficients across response categories. 

As to now, the model is over-parameterized with a unique coefficient for every 

response category and a common coefficient. We want to use the coefficient of the 

common variable, cons012, only to specify a common between-subject variability. 

So we do not need this variable in the fixed part of the model. To specify how the 



178 
 

variable is used, we click on the cons.012 terms, uncheck the Fixed Parameter 

check box in the X variable window, check the k(NO_long) check box and click 

on Done. We start with the default Nonlinear estimation procedure (1st order 

MQL) and run the first estimation. 

 

So far, the second line indicates that we have specified the cumulative category 

model. This is followed by three response variable equations, one for each 

cumulative category (PLI1 = 0, PLI1 <=1, and PLI1 <=2). The explanatory 

variable in each case is a constant, allowing the intercept to be different for each. 

The other explanatory variable, cons.012, is also a constant (=1) whose sole 

contribution to the model – via its random coefficient – is to add the same random 
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error term to each of the five categories’ equations. A common subject-level 

variance is thus estimated for each category.  

Next, we switch, in the Nonlinear Estimation menu, to the preferable method of 

estimation, 2nd order PQL. We rather click on Start again and get the following. 

 

 

Note that the previous 1st order MQL procedure has in fact largely underestimated 

all parameters.  

We now want to add subject level covariates gender, ILGT and centered (on the 

grand mean) age using common coefficients across response categories. We click, 

in turn, on Add Term and select in the variable box of the Specify term window 
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respective variables GENDER, ILGT, and AGE, click on add Common 

coefficient and Include all in the Specify common pattern window, then click on 

Done.  

 

Note that the (unexplained) subject-level variance is reduced when the model is 

adjusted for gender, ILGT, and age. 

We could also have chosen to use add Separate coefficients to allow separate 

coefficients for each category. Let’s see the effect of allowing each response 

category equation to have its own coefficients for gender, ILGT, and age. To do 

this, we delete the common terms and add them again, this time using the add 

Separate coefficients button.  
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In general, differences among coefficients are huge which makes the model rather 

difficult to interpret. The important point here is that, in the previous model, we are 

taking advantage of the ordering in the categories to simplify the model structure.  

 

7.5 A Three-level Model 

So far, one important level is missing in our model of plaque index scores, the 

tooth. We may consider the tooth level by clicking on the response variable in the 

Equations window and change N levels to 4-ijk. We then select NO_long for 4-l, 

TOOTH_NO2 for 3-k, SITE_long for 2-j and click done. We then click on 

v3kl.cons012 in the Equations window and check the box l(NO_long). We note 

that we have introduced two random error terms, tooth-level v3kl and subject level 

f3l, to each of the three categories equations. We make sure, in Nonlinear, that the 
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default estimation is selected first (1st order MQL), click on Done and then click on 

Start.  

 

We now want to add tooth type and site into the model. We first both toggle TYPE 

and SITE, in the Names window, categorical, then click successively on Add 

Term and on add Common coefficients (with TYPE_1, i.e. the central incisor in 

the maxilla, and SITE_1, i.e. mesiobuccal as references). We click on the More 

button and run the model. We can check, in Nonlinear, 2nd order MQL (2nd order 

PQL won’t converge) and get the result below. When comparing the below results 

with those obtained in section 7.2, we see that we would make similar inferences 

about the common effect of gender, ILGT, age, tooth type and site. 
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However, albeit the above model provides a more detailed description of the 

probabilities of each plaque index score, this applies only to one (the first) 

examination. MLwiN does not provide the possibility to examine, in one model, 

repeated measures of multinomial responses. 
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